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Resumo

Introdução, objetivos e metodologia

Este projeto faz uma introdução à topologia algébrica com abordagem introdutória

e intuitiva, utilizando o apelo geométrico. Para isso, vamos nos restringir ao es-

tudo das superfı́cies, que podem ser facilmente visualizadas, dando-nos intuição

geométrica e reduzindo a natureza abstrata da topologia algébrica a um nı́vel acessı́vel

a um aluno de graduação. A principal bibliografia utilizada será [5] e [7]. Também

usaremos [1], [2], [3], [4], [6], [8] e [9] como bibliografia complementar. Além de

aplicações interessantes, este é um dos únicos assuntos que permitem que um es-

tudante ainda na graduação veja as três grandes áreas da matemática - geometria,

análise e álgebra - trabalhando juntas em harmonia para resolver importantes pro-

blemas, como o Teorema da curva de Jordan e o Teorema das quatro cores.

O objetivo deste projeto é a apresentação dos grupos de homologia. Existem várias

formas diferentes de se definir os grupos de homologia. Estudaremos os grupos de

homologia simplicial, que foram os primeiros historicamente e são conceitualmente

mais simples e concretos, além de mais fáceis de se calcular.

A metodologia a ser empregada é a usual na área de Matemática: estudo indivi-

dual (leitura e resolução de exercı́cios), discussões semanais com a orientadora e

apresentações de seminários periodicamente sobre o conteúdo estudado.

Palavras Chaves: Topologia algébrica, curva de Jordan, quatro cores
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1 Parte 1

1.1 Conceitos Básicos

Nesta seção, introduziremos os conceitos de célula, complexos e outros conceitos

no plano.

Definição 1.1 Usando coordenadas cartesianas no plano podemos associar um ponto P
a um par de números P = (x,y). Dados dois pontos P = (x,y) e Q = (z,w) definimos a
soma como

P ⊕Q = (x+ z,y +w)

o produto de um ponto P por um escalar λ como

λ� P = (λ.x,λ.y)

e a norma de um ponto P como

‖P ‖ =
√
x2 + y2.

Observação 1.2 A norma de um ponto é a distância euclidiana do ponto à origem.
Usando a norma podemos expressar a distância entre dois pontos P e Q como ‖P −Q‖.

Definição 1.3 Seja P um ponto e A um subconjunto do plano. Uma vizinhança de P é
qualquer disco circular (sem a fronteira) que contém P . Dizemos que P está próximo ao
conjunto A se toda vizinhança de P contiver pelo menos um ponto de A.

Se P está próximo de A escrevemos P ← A. Agora, podemos definir transformações

contı́nuas como transformações que preservam relações de vizinhanças.

Definição 1.4 Uma transformação contı́nua de um subconjunto D do plano em outro
subconjunto R é uma função f com domı́nio D e imagem R de modo que para cada ponto
P ∈ D e conjunto A ⊂ D, se P está próximo de A, então f (P ) está próximo de f [A] =

{f (Q) :Q ∈ A}.
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1 Parte 1

Definição 1.5 A transformação identidade Id é a transformação Id(P ) = P . Uma transformação
u : D → R é chamada de invertı́vel se existe uma transformação v : R → D tal que
v ◦u = Id. A transformação v é chamada de uma inversa para u.

Definição 1.6 Uma transformação topológica no plano é uma transformação contı́nua
que tem uma transformação inversa contı́nua. Dois subconjuntos do plano são chamados
topologicamente equivalentes se existir uma transformação topológica entre eles.

Definição 1.7 Uma célula é qualquer figura topologicamente equivalente a um disco fe-
chado. Como ilustra a Figura (1.1).

Figura 1.1: Exemplos de células

Observação 1.8 Subconjuntos do plano são ditos topologicamente equivalentes quando
qualquer uma delas pode ser continuamente transformada em outra, ou seja, transformações
que não envolvem ”rasgar”ou ”cortar”.

Definição 1.9 Propriedade topológica é definida como uma propriedade de um subcon-
junto do plano que é invariante sobre a uma transformação contı́nua.

Definição 1.10 Um complexo é qualquer subconjunto do plano composto de mais de
uma célula, de modo que, um complexo é construı́do à partir da colagem dos lados de
duas células.

Definição 1.11 Defina polı́gono como uma célula na qual um finito número de pontos
em sua fronteira são escolhidos como vértices. As seções na fronteira entre dois vértices
serão chamados de lados.

Chamaremos de n-gono um polı́gono que possui n lados.

Definição 1.12 Um poliedro é um complexo que é topologicamente equivalente a uma
esfera.
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1 Parte 1

Definição 1.13 Uma curva é qualquer subconjunto do plano topologicamente equiva-
lente a um segmento de reta L = {(x,y) : y = 0 e 0 ≤ x ≤ 1} e uma curva fechada (ou
curva de Jordan) é qualquer subconjunto do plano topologicamente equivalente a um
cı́rculo.

Definição 1.14 Sejam P = {P1, P2, . . .} uma sequência de pontos no plano e P um ponto
qualquer. O ponto P está próximo da sequência P se P = Pn para um número infinito de
termos da sequência ou P = Pn para um número finito de termos da sequência e P está
próximo do conjunto de pontos formado pelos termos da sequência.

Observação 1.15 Proximidade a sequências pode ser usada para caracterizar funções
contı́nuas da mesma maneira que proximidade a conjuntos.

Teorema 1.16 Dados D e R subconjuntos do plano, uma função f : D → R é contı́nua
se, e somente se, para qualquer ponto P próximo a sequência P = {Pn} em D teremos que
f (P ) está próximo da sequência f (P) em R.

Demonstração: ( =⇒ ) Seja f : D → R uma transformação contı́nua, então por

definição temos que dado um ponto P ∈D e um conjunto A ⊂D segue que se P ← A,

então f (P )← f [A]. Considere A o conjunto dos pontos da sequência P e a prova se-

gue.

(⇐=) Sejam f : D → R uma função, P um ponto tal que P ∈ D e A um conjunto

formado pelos pontos de P. Segue, por hipótese, que se P ← A, então f (P )← f [A].

Donde segue que f é contı́nua. �

Definição 1.17 Um conjunto S do plano é compacto se toda sequência em S tem um
ponto próximo de S.

Definição 1.18 Um conjunto é limitado se ele está contido em um retânguloR = {(x,y),m1 ≤
x ≤ n1 e m2 ≤ y ≤ n2}, para quaisquer m1,m2,n1,n2 ∈ R e um conjunto é fechado se ele
contém todos os seus pontos próximos.

Compacidade é uma propriedade topológica (cf. [9]).

Teorema 1.19 (Bolzano-Weierstrass) Células são compactas.

Demonstração: Seja D um disco. Segue que o intervalo [0,1] é compacto (cf. [9]).

Disto segue que o quadrado é compacto, pois o produto de compactos é compactos.

Como o quadrado é topologicamente equivalente ao disco, temos que o disco é com-

pacto. Como células são subconjuntosdo plano topologicamente equivalentes a um

disco, temos que células são compactas. �
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1 Parte 1

Corolário 1.20 Um subconjunto do plano S é compacto se, e somente se, S é fechado e
limitado.

Demonstração: ( =⇒ ) Suponha que S não é limitado, então S não esta contido

num retângulo. Em particular, para cada retângulo Rn centrado na origem existe

um ponto Pn em S, mas fora de Rn. Então a sequência P = {Pn} não tem ponto

próximo em S. Portanto, S não é compacto. Suponha que S não é fechado, então,

por definição, existe um ponto próximo a S que não está em S. Portanto, S não é

compacto.

(⇐=) Seja S um conjunto fechado e limitado. Como S é limitado e fechado, ele

esta contido em um retângulo R, note que R é uma célula e, pelo teorema anterior,

compacto. Note também, que podemos transformar topologicamente o retângulo R

no conjunto S e, como compacidade é uma propriedade topológica, temos que S é

compacto. �

Definição 1.21 Um subconjunto do plano S é conexo se sempre que S for dividido em
dois subconjuntos disjuntos não-vazios A e B, um desses conjuntos sempre contém um
ponto próximo ao outro.

Observação 1.22 Conexidade é uma propriedade topológica. SejaX um espaço topológico.
É fácil ver que X é desconexo se, e somente se, existem U,V ⊂ X abertos não vazios e dis-
juntos tais que X =U ∪V .

Observação 1.23 Vamos mostrar que R é conexo. Por absurdo, suponha que R seja
desconexo. Existem U,V ⊂ R abertos, não vazios, disjuntos tais que R = U ∪ V . Tome
a ∈ U e b ∈ V . Suponha, sem perda de generalidade, que a < b. Considere S = {x ∈ [a,b] :

[a,x] ⊂ U }. Temos que S , ∅, pois a ∈ S. Além disso, S é limitado superiormente (por b,
por exemplo). Portanto, existe s = supS.
Note que s < V , pois se s ∈ V , existiria ε > 0 tal que ]s − ε,s + ε[⊂ V , pois V é aberto em
R. Como s = supS, temos que s − ε não é cota superior de S. Logo, existe x ∈ S tal que
s−ε < x ≤ s. Logo, x ∈U ∩V . Contudo, isto não ocorre, pois U ∩V = ∅. Portanto, s < V .
Como R = U ∪V s < V , temos que s ∈ U . Usando o fato que U é aberto em R, tomamos
δ > 0 tal que ]s − δ,s + δ[⊂ U e s + δ < b. Tome y ∈ S tal que s − δ < y ≤ s. Tomemos que[
a,s+ δ

2

]
= [a,y]∪

[
y,s+ δ

2

]
⊂ U . Portanto, s + δ

2 ∈ S. Absurdo, pois s é cota superior de
S. Logo, R é conexo.

Teorema 1.24 Curvas são conexas.
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1 Parte 1

Demonstração: Seja C = {(x,y) : y = 0 e 0 ≤ x ≤ 1} um segmento de reta. Segue

da Observação (1.23) que o intervalo C é conexo. Como conexidade é uma pro-

priedade topológica, qualquer subconjunto do plano topologicamente equivalente

ao segmento C é conexo. Como, por definição, curvas são subconjuntos do plano

topologicamente equivalentes ao segmento C, temos que curvas são conexas. �

Definição 1.25 Um espaço topológico é um conjunto τ junto com uma classe N de sub-
conjuntos de τ de modo que:

(a) Cada ponto P de τ está em algum elemento de N . Os elementos de N que contém P

são chamados vizinhanças de P .

(b) Toda intersecção de duas vizinhanças de um ponto P contém uma vizinhança.

Vamos agora generalizar os conceitos de proximidade e conjuntos fechados para

espaços topológicos.

Definição 1.26 Sejam τ um espaço topológico, A um subconjunto de τ e P um ponto de
τ . P está próximo de A, escrevemos P ← A, se toda vizinhança de P contém um ponto de
distinto de P . P está próximo da sequência {Pn} se P = Pn para infinitos valores de n ou P
está próximo de um conjunto de infinitos pontos dessa sequência.

Definição 1.27 Seja τ um espaço topológico e A um subconjunto de τ . A é fechado se A
contém todos os pontos próximos a ele. A é aberto se todo ponto em A não está não está
próximo a τ \A. Compacto se toda sequência de A tem um ponto próximo em A e conexo
se sempre que A é separado em duas partes disjuntas não-vazias, então uma dessas partes
contém um ponto próximo a outra parte. Associado a cada conjunto A existe o interior de
A que consiste de todos os ponto de A que não estão em τ \A e nem próximos de τ \A, o
fecho de A consiste dos pontos de A junto com os pontos próximos a A e a fronteira de A
consiste nos pontos próximos a A e a τ \A.

Definição 1.28 Sejam τ e κ espaços topológicos. A transformação f : τ → κ é contı́nua
de para cada ponto P de τ e subconjunto A de τ tais que P ← A, então f (P )← f [A].

Uma transformação topológica é uma transformação contı́nua, invertı́vel e que

tem inversa contı́nua. Dois espaços topológicos são topologicamente equivalentes

se existe uma transformação topológica entre eles.
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1 Parte 1

1.2 Campos Vetoriais

Definição 1.29 Um campo vetorial V em um subconjunto D do plano é uma função que
associa a cada P ∈ D um vetor no plano com a origem em P . Assim, se P = (x,y) então
V (P ) pode ser descrito da seguinte maneira

V (P ) = (F(x,y),G(x,y)),

onde F e G são funções a valores reais de P .

Um campo vetorial V (P ) é contı́nuo quando as funções F e G forem contı́nuas de

acordo com o que foi definido em (1.29).

Observação 1.30 Dado V um campo vetorial em D, podemos definir uma função da
seguinte maneira

f (P ) = P +V (P ) = (x+F(x,y), y +G(x,y)).

Definição 1.31 Seja f : D → D uma transformação contı́nua sobre uma região D do
plano. Se f (P ) = P , para algum P ∈ D, dizemos que P é um ponto fixo de f e que f
possui a propriedade do ponto fixo. Se toda transformação contı́nua f : D → D tiver a
propriedade do ponto fixo, então dizemos que D tem a propriedade do ponto fixo.

A propriedade do ponto fixo é uma propriedade topológica (cf. [9]).

Definição 1.32 Uma triangulação de um triângulo D (ou qualquer outro polı́gono) é
uma divisão deD em um número finito de triângulos de modo que cada aresta da fronteira
de D é a aresta de somente um triângulo da divisão e cada aresta no interior de D é o lado
de exatamente dois triângulos da divisão. Como ilustra a Figura (1.2).

Figura 1.2: Exemplos de Triangulações
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1 Parte 1

Dados um triângulo D e uma triangulação de D, descreveremos uma forma de

rotular os vértices dessa triangulação.

Definição 1.33 SejamD um triângulo e considere emD uma triangulação. Uma rotula-
gem de Sperner é uma atribuição de rótulos aos vértices dos triângulos dessa triangulação.
Primeiramente, os vértices de D serão rotulados com rótulos diferentes. Posteriormente,
os vértices dos triângulos da triangulação que pertencem aos lados da fronteira deD serão
rotulados somente com os rótulos iguais aos das extremidades do lado ao que pertencem.
Por último, os vértices no interior de D serão rotulados de qualquer maneira, entretanto
só podem ser usados os rótulos utilizados nos vértices de D. Como ilustra a Figura (1.3).

Figura 1.3: Exemplos de Rotulagem de Sperner

Definição 1.34 Um triângulo (segmento) cujos vértices possuem rótulos diferentes são
chamados de triângulos (segmentos) completos. Como ilustra a Figura (1.4).

Figura 1.4: Exemplos de Triângulo Completo (em azul)

O Lema a seguir garante a existência de triângulos completos.

Lema 1.35 Seja D um triângulo no plano e T uma triangulação de D. Temos que para
uma rotulagem de Sperner da triangulação T existe pelo menos um triângulo completo.

Demonstração: Provaremos que o número de triângulos completos é ı́mpar. Con-

sidere, inicialmente, o problema análogo em uma dimensão. Um segmentos de reta
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1 Parte 1

com rótulos A e B, dividido em um número finito de segmentos, cujos vértices são

rotulados somente com A′s e B′s. Nós devemos provar que o números de segmentos

completos, que denotaremos por b, é um número ı́mpar. Seja a o número de seg-

mentos com dois rótulos A. Assim, o número 2.a+b é o dobro do número de vértices

com o rótulo A. Seja c o numero de vértices com rótulo A no interior do segmento.

Então

2.a+ b = 2.c+ 1

Consequentemente

b = 2.(c − a) + 1

Portanto, o número de segmentos completos b é ı́mpar. Retornando para o problema

em duas dimensões, queremos mostrar que o número de triângulos completos b é

ı́mpar. Seja a o número de triângulos cujos vértices são rotulados com ABA ou BAB.

Assim, o número 2.a+b é o dobro do número de lados com vértices cujos rótulos são

A e B. Seja c o número de lados cujos vértices são rotulados com A e B no interior

do triângulo original e d o número de segmentos na fronteira do triângulo original

cujos vértices são rotulados com A e B. Então

2.a+ b = 2.c+ d

Consequentemente

b = 2.(c − a) + d

Como provamos na primeira parte que o número de segmentos completos d é ı́mpar,

segue que o número de triângulos completos b é ı́mpar. �

Definição 1.36 Considere um sistema de equações diferenciais
dx
dt = F(x,y)
dy
dt = G(x,y)

determinado por um campo vetorial contı́nuo V (x,y) = (F(x,y),G(x,y)) em alguma região
D do plano. O conjunto de soluções desse sistema formam uma famı́lia de curvas direcio-
nadas no plano, chamadas curvas integrais do sistema.

As curvas integrais de um sistema de equações diferenciais têm tangentes em cada

ponto P . A figura formada por essas curvas são chamadas de retratos de fase do

sistema de equações diferenciais. Existe um conjunto de pontos chamados de pontos
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crı́ticos, onde V (P ) = 0 e ao redor deles as curvas integrais se reúnem.

Teorema 1.37 (Teorema do ponto fixo de Brouwer) Células têm a propriedade do
ponto fixo.

Demonstração: Seja D uma célula no plano. Como uma célula a propriedade do

ponto fixo é uma propriedade topológica se provarmos que um triângulo possui

a propriedade do ponto fixo, provaremos que células possuem a propriedade do

ponto fixo. Seja f : D → D uma transformação contı́nua e V um campo de vetores

correspondente a f , ou seja,

f (P ) = P +V (P )

Se encontrarmos um ponto P tal que V (P ) = 0, esse ponto possui a propriedade do

ponto fixo, pois

f (P ) = P +V (P ) = P + 0 = P

Sem perda de generalidade, considere um triângulo D que tem um vértice no eixo

leste, outro no eixo oeste e outro no eixo norte. Como ilustra Figura (1.5).

Figura 1.5: Localização dos pontos nos eixos

Para esta demonstração, consideraremos uma divisão do plano em três regiões:

nordeste, noroeste e sul, como ilustra a Figura (1.6).
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1 Parte 1

Figura 1.6: As três direções do plano

Para o triângulo D, rotule cada vértice de acordo com a direção do vetor desse

respectivo vértice. Existem três situações, nas quais um vetor aponta para duas

direções: os vetores que apontam para leste, oeste e norte no sentido usual. Para

pontos que tem o vetor apontando para norte e leste, defina a direção como nor-

deste e para pontos que têm o vetor apontando para o oeste, defina a direção como

noroeste. Note que, o único ponto que aponta para todas as direções é o vetor nulo.

O vértice no eixo oeste, que tem o seu vetor apontando para o nordeste, será rotu-

lado como P1; o vetor no eixo leste; que tem o vetor apontando para o noroeste, será

rotulado com Q1; e o vértice no eixo norte, que tem o vetor apontando para o sul,

defina o rótulo R1. Seja a triangulação T1 sobre o triângulo D. Rotule os vértices

P1, Q1 e R1 por A, B e C, respectivamente. Posteriormente, considere uma rotu-

lagem de Sperner sobre os triângulos de T1 de modo que os pontos A tenham seu

respectivo vetor apontando para o nordeste, os pontos B tenham seu respectivo ve-

tor apontando para o noroeste e os pontos C tenham seu respectivo vetor apontando

para o sul. Pelo Lema (1.35) segue que existe pelo menos um triângulo completo.

Sem perda de generalidade, seja D1 um triângulo completo de T1. Renomeie os seus

vértices A, B e C para P2, Q2 e R2. Posteriormente, aplique uma triangulação T2

sobre D1 e repita o processo de rotulagem. Repita esse processo e note que os lados

dos triângulos completos tendem a zero. Por construção, D contém uma sequência

de triângulos completos e as sequências P = {Pn}, Q = {Qn} e R = {Rn} de vértices

que têm seus vetores apontando somente para o nordeste, noroeste e sul, respec-

tivamente. Pela compacidade de D existe um ponto P ∈ D tal que P → P . Como

os lados dos triângulos ficam arbitrariamente pequenos a sequência P fica arbitra-

riamente próxima de Q e R, segue daı́ que Q→ P e R→ P . Como V é um campo

vetorial contı́nuo e P → P , temos que V (P) → V (P ), assim como os vetores V (Q)
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1 Parte 1

e V (R). Como P é uma sequência de pontos cujos V (P) estão na direção nordeste

e V (P) → P , temos que P é um ponto cujo V (P ) aponta para o nordeste também.

Analogamente, para Q e R concluı́mos que P é um ponto cujo V (P ) aponta para no-

roeste e sul, respectivamente. Assim, como o vetor nulo é o único que está nas três

direções, então V (P ) = 0. �

Lema 1.38 Seja D qualquer conjunto compacto juntamente com um campo vetorial V .
Se V é sempre diferente de zero em D, então existe uma constante ε > 0 de modo que todo
triângulo completo com vértices em D tem o comprimento de um lado maior que ε.

Demonstração: Contra-positiva do Teorema (1.37). �

Sejam uma célula na forma de um polı́gono com qualquer número de lados e uma

triangulação para essa célula tal que todos os vértices possuam somente rótulos A, B

e C. Considere C o número de triângulos completos contado com orientação, ou seja,

cada triângulo completo contribui com +1 se os rótulos ABC são dispostos nessa or-

dem no sentido anti-horário ao redor do triângulo, mas cada triângulo completo

contribui com −1 se os rótulos ABC são dispostos nessa ordem no sentido horário ao

longo do triângulo. Considere também I o número de segmentos completos (com

rótulos AB) na fronteira do polı́gono contados com orientação, ou seja, cada seg-

mento completo contribui com +1 se os rótulos AB são dispostos nessa ordem no

sentido anti-horário ao redor do polı́gono, mas cada segmento completo contribui

com −1 se os rótulos AB são dispostos nessa ordem no sentido horário ao longo do

polı́gono. Como ilustram a Figura (1.7) e a Figura (1.8).

Figura 1.7: Ilustração do número C Figura 1.8: Ilustração do número I
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Teorema 1.39 C = I

Demonstração: Seja S o número de arestas com rótulo AB na fronteira do polı́gono

e nos triângulos da triangulação do mesmo, contados da seguinte maneira: cada

triângulo é considerado à parte dos demais e seus lados AB são contados como ±1

de acordo com a orientação do triângulo a que ele pertence. Note que um triângulo

completo contribui com ±1 para C dependendo de sua orientação e ao mesmo tempo

contribui com ±1 para S dependendo da orientação, como a orientação é a mesma

para ambos, a contribuição e igual para ambos. Note também, que um triângulo

do tipo ABA contribui com 0 para S , pois possui um lado com orientação positiva

e outro com orientação negativa e também contribui 0 para C, pois ABA não é um

triangulo completo. Analogamente, obtemos o mesmo resultado para os triângulos

ABB. Portanto, C = S . Por outro lado, considere um lado com rótulo AB. Se esse lado

estiver no interior do polı́gono ele pertence a dois triângulos que contribuem com

+1 e −1 para S , considerando todos os segmentos com rótulos AB no interior, temos

que eles contribuem 0 para S . Portanto, os únicos segmentos que contribuem para

S são os mesmos que contribuem para I e como os segmentos possuem a mesma

orientação, temos que S = I . Consequentemente, C = S = I . �

Definição 1.40 Considere um campo vetorial contı́nuo V em uma curva fechada γ tal
que V não se anula em γ . SejaQ um ponto fixado em γ , e suponha que o ponto P percorra
a curva γ , partindo de Q no sentido anti-horário. Ao retornar ao ponto Q o vetor V (P )

fará um determinado número de revoluções que serão contadas da seguinte maneira: +1

se a revolução for no sentido anti-horário e −1 se a revolução for no sentido horário. O
resultado algébrico dessa contagem é chamado de winding number de V sobre γ e é
denotado por W (γ). Como ilustra a Figura (1.9).
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Figura 1.9: Ilustração do winding number

Observação 1.41 Uma forma alternativa para calcular o winding number de V sobre γ
(ao invés de contar o número de revoluções de V (P )) é escolher uma direção aleatória e
selecionar os pontos P de γ tais que V (P ) tenha a direção escolhida. Então, contaremos
da seguinte maneira: +1 se V (P ) passar na direção escolhida no sentido anti-horário, −1

se V (P ) passar na direção escolhida no sentido anti-horário e 0 se V (P ) não completar
uma revolução completa.

Observação 1.42 Seja {Pi}ni=1 um conjunto finito de pontos de γ . Como {Pi} divide γ
em um número finito de lados, chamaremos {Pi} de partição de γ . Rotule os pontos da
partição de γ de acordo com a direção dos vetores V (Pi) considerando a divisão do plano
em três regiões: sul (C), noroeste (B) e nordeste (A). Agora, se os pontos {Pi} tiverem sido
escolhidos suficientemente próximos uns dos outros, quando o vetor V (P ) passar ao longo
da direção norte no sentido anti-horário um lado com rótulo AB irá aparecer e quando o
vetor V (P ) passar ao longo da direção norte no sentido horário um lado com rótulo BA
irá aparecer. Assim, o winding number coincide com o ı́ndice I .

Definição 1.43 Dizemos que a divisão {Pi}ni=1 de γ é ε−densa se qualquer ponto inserido
entre dois pontos da divisão estiver a uma distância menor do que ε dos pontos de cada
lado.

Teorema 1.44 Tome um campo vetorial contı́nuo V definido sobre uma curva fechada
γ e suponha que V (P ) , 0,∀P ∈ γ . Para quaisquer divisões P = {Pi} e R = {Ri} de γ ,
sejam I (P) e I (R) os ı́ndices do P e R rotulados de acordo com a direção dos vetores V
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nos vértices de P e R. Então, existe uma constante ε > 0 de modo que se P e R são duas
divisões ε − densas de γ , então I (P) = I (R).

Demonstração: Podemos aplicar o Lema (1.38) à curva γ , pois curvas fechadas são

compactas. Então existe uma constante ε > 0 tal que todo triângulo completo com

vértices em γ tem lado maior que ε. Sejam P = {Pi} e R = {Ri} duas divisões ε−densas
de γ . Note que ao adicionarmos um ponto a qualquer divisão ε − densa não altera o

seu ı́ndice I . Portanto, seja S = P
⋃

R. Consequentemente, temos que I (P) = I (S) e

I (R) = I (S). Logo, I (P) = I (R). �

Dada uma curva fechada γ e um campo vetorial contı́nuo V tal que V (P ) , 0,∀P ∈
γ , o winding number de V em γ é único para qualquer rotulagem do polı́gono

obtido para qualquer divisão ε−densade γ , onde ε é a constante do Teorema (1.44).

Teorema 1.45 Seja D uma célula com uma curva fechada γ bordo. Se um campo vetorial
contı́nuo V nunca é zero em D, então W (γ) = 0.

Demonstração: Aplique o Lema (1.38) em D. Como V nunca é zero em D, existe

um ε > 0 tal que todo triângulo completo com vértices em D tem lados maiores que

ε. Escolha uma divisão de γ ε − densa. Por definição, o ı́ndice dessa divisão é o

winding number de V em γ . Unindo essa divisão com a triangulação de D, pelo

Teorema (1.39) C = I . Note que, podemos adicionar pontos a triangulação de D
de tal modo que a distância entre dois vértices seja sempre menor que ε. Portanto

C = 0. Consequentemente, W (γ) = 0. �

Teorema 1.46 Sejam V um campo vetorial contı́nuo, D uma célula e γ sua fronteira.
Suponha que V não é zero em γ , então

W (γ) = I (P1) + · · ·+ I (Pn),

onde P1, . . . , Pn são pontos crı́ticos de V em D.

Demonstração: Considere P1, . . . , Pn pontos crı́ticos de V em D. Ao redor de cada

Pi , construa um cı́rculo γi que contenha somente um ponto crı́tico, nesse caso Pi .

Construa, agora, curvas entre γi e γ , dividindo D em Dk células e, então , aplique o

Teorema (1.45). Consequentemente

W (γ) =W (γ1) + · · ·+W (γn)

= I (P1) + · · ·+ I (Pn).

�
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1.3 Homologia plana e o teorema da curva de Jordan

Definição 1.47 Uma cadeia poligonal é um subconjunto do plano formado por uma
sequência finita de segmentos de retas paralelos aos eixos coordenados, sendo que cada
segmento compartilha os pontos finais com os outros segmentos da sequência. Como ilus-
tra Figura (1.10).

cadeia poligonais têm dois pontos finais. Dados dois pontos P e Q, se existe uma

cadeia com pontos finais P e Q, dizemos que P e Q são conectados por uma cadeia.

Figura 1.10: Exemplo de cadeia

Definição 1.48 Dizemos que um espaço topológico X é conexo por caminhos se para
quaisquer x,y ∈ X existe uma cadeia poligonal ligando tais pontos.

Proposição 1.49 Um espaço topológico X é conexo por caminhos se, e somente se, para
quaisquer x,y ∈ X existe uma f : [0,1]→ X contı́nua tal que f (0) = x e f (1) = y.

Teorema 1.50 Seja G um conjunto aberto. Então G é conexo se, e somente se, G é conexo
por caminhos.

Demonstração: ( =⇒ ) Suponha, por absurdo, que existem dois pontos P ,Q ∈ G que

não podem ser conectados por um caminho. Considere V o conjunto dos pontos que

podem se conectar a P por um caminho e considere, também, G \V . Note que

• V , ∅, pois P ∈ V ;

• G \V , ∅, pois Q ∈ G \V ;
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• G = V ∪ (G \V ).

Vamos mostrar que V e G \V são abertos. E daı́ chegamos a um absurdo, pois G é

conexo por hipótese.

• V é aberto:
De fato, seja P ′ ∈ V , então P ′ ∈ G e como, por hipótese, G é aberto, existe uma

vizinhança aberta VP ′ de P ′ tal que P ′′ pode ser conectado a P ′ por uma po-

ligonal γ1, mas como P ′ pode ser conectado a P por uma poligonal γ0, pois

P ′ ∈ V . Então, P ′′ pode ser conectado a P por uma poligonal γ0 ∪ γ1. Con-

sequentemente, P ′′ ∈ V . Como P ′′ é arbitrário seque que VP ′ ⊂ V , logo V é

aberto.

• G \V é aberto:
De fato, seja Q′ ∈ G \ V , então Q′ ∈ G, e como G é aberto por hipótese, existe

uma vizinhança aberta VQ′ de Q′ tal que Q′ ∈ VQ′ ⊂ G. Considere agora

Q′′ ∈ VQ′ , note que Q′′ pode ser conectado a Q′ por uma poligonal γ1. Su-

ponha, por absurdo, queQ′′ possa se conectar a P por uma poligonal γ0, então

Q′ pode se conectar a P pela poligonal γ0∪γ1. Absurdo, pois Q′ ∈ G \V . Con-

sequentemente, Q′′ ∈ G \V . Como Q′′ é arbitrário, segue que VQ′ ⊂ G \V , logo

G \V é aberto.

(⇐=) Suponha, por absurdo, que G não é conexo. Então existem U,V ⊂ G abertos

não vazios, disjuntos tais que G = U ∪ V . Tome x ∈ U e y ∈ V . Como G é conexo

por caminhos, existe f : [0,1]→ G contı́nua tal que f (0) = x e f (1) = y. Como f é

contı́nua, f −1[U ] e f −1[V ] são abertos em [0,1]. Temos que f −1[U ] , ∅ e f −[V ] , ∅.
Além disso, f −1[U ]∩ f −1[V ] = ∅, pois U ∩V = ∅. Por fim, f −1[U ]∪ f −1[V ] = [0,1].

Disto segue que [0,1] é desconexo. Absurdo, pela Observação (1.23). �

Definição 1.51 Uma grade G é uma porção retangular do plano com lados paralelos aos
eixos coordenados e com um número finito de segmentos de reta adicionadas ao longo do
retângulo paralelas aos lados.

As intersecções de segmentos de reta dentro de uma grade são chamadas vértices.
Os segmentos de reta dentro de uma grade entre dois vértices são chamados arestas.
As regiões dentro de uma grade entre um conjunto de arestas são chamadas faces.

Observação 1.52 Como triangulações, grades são um tipo de complexos.
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A terminologia adotada acima são boas para um contato intuitivo com o estudo de

grades, entretanto adotaremos uma terminologia que simplificará o estudo geral da

homologia.

Definição 1.53 Chamaremos os vértices de 0− simplexo, as arestas de 1− simplexo e as
faces de 2−simplexo. A união de simplexo é chamada de cadeia. Chamaremos a união de
0−simplexo de 0−cadeia, a união de 1−simplexo de 1−cadeia e a união de 2−simplexo
de 2− cadeia.

Observação 1.54 Uma cadeia deve ser de um desses tipos e, além disso, não existem
cadeia mistas.

Vamos introduzir uma álgebra de cadeia que será útil para contá-las posterior-

mente.

Definição 1.55 Sejam Ck1 e Ck2 duas k − cadeia, onde k = 0,1,2. Podemos definir uma
operação ⊕ entre duas k − cadeia, mesmo k, como uma nova k − cadeia constituı́da dos
k − simplexo em Ck1 ou Ck2 , mas não em ambos, como ilustra a Figura (1.11).

Figura 1.11: Exemplos da soma de k − cadeia
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Proposição 1.56 A operação ⊕ será chamada de soma, se Ck1 e Ck2 são duas k − cadeia,
temos queCk1⊕C

k
2 é uma k−cadeia, onde k = 0,1,2. Além disso, as seguintes propriedades

são válidas:

a) Comutatividade: Ck1 ⊕C
k
2 = Ck2 ⊕C

k
1 , para todas as k − cadeia Ck1 e Ck2 .

b) Associatividade: Ck1 ⊕
(
Ck2 ⊕C

k
3

)
=

(
Ck1 ⊕C

k
2

)
⊕Ck3 , para todas as k − cadeia Ck1 , Ck2

e Ck2 .

c) Elemento Neutro: Existe um único elemento neutro ∅k tal que Ck1 ⊕ ∅k = Ck1 , para
toda k − cadeia Ck1 .

d) Inversa: Existe um único elemento inverso para cada k−cadeia tal queCk1⊕C
k
2 = ∅k.

Note que, cada grade G determina três grupos chamados de grupos de cadeias de G.

Introduziremos agora o operador bordo, ∂, como um operador que conecta a álgebra

de uma k − cadeia com a álgebra de uma (k − 1)− cadeia em uma grade.

Definição 1.57 Seja Ck uma k − cadeia. Defina ∂Ck como a (k −1)− cadeia de todos os
(k −1)− simplexo que estão contidos em um número ı́mpar de k − simplexo de Ck, como
ilustra a Figura (1.12).

Figura 1.12: Exemplos do operador bordo

Observação 1.58 Note que o operador bordo só está definido para 1−cadeia e 2−cadeia.

21



1 Parte 1

Proposição 1.59 Sejam Ck1 e Ck2 k − cadeia com k = 1,2. Então vale a propriedade da
aditividade para o operador bordo, ou seja,

∂
(
Ck1 ⊕C

k
2

)
= ∂

(
Ck1

)
⊕∂

(
Ck2

)
Demonstração: Seja S um (k−1)−simplex. Seja n1 e n2 os números de k−simplexo em

Ck1 e Ck2 , respectivamente, que contém S. Então S ⊂ ∂
(
Ck1

)
se n1 é ı́mpar e S ⊂ ∂

(
Ck2

)
se n2 é ı́mpar. Se n1 e n2 são ambos ı́mpares ou ambos pares, então S não está em

∂
(
Ck1

)
⊕ ∂

(
Ck2

)
. Esse é o caso em que n1 + n2 é par. Por outro lado, se somente

um de n1 e n2 for par e o outro ı́mpar, então S ⊂ ∂
(
Ck1

)
⊕ ∂

(
Ck2

)
e n1 + n2 é ı́mpar.

Consequentemente, S estar ou não contido em ∂
(
Ck1

)
⊕ ∂

(
Ck2

)
depende somente se

n1 +n2 é ı́mpar ou par. Retornando para Ck1⊕C
k
2 , seja n o número de k−simplexo que

contém S e que estão contidos em Ck1 e Ck2 . Esses são os simplexo que se cancelam e,

portanto, não estão em Ck1⊕C
k
2 . Segue que n1 +n2−2.n é o número de k−simplexo de

Ck1⊕C
k
2 que contém S. Assim sendo, S ⊂ ∂

(
Ck1 ⊕C

k
2

)
depende somente se n1 +n2−2.n

é ı́mpar ou par. Como (n1 + n2) e (n1 + n2 − 2.n) são ambos pares ou ambos ı́mpares

que S está contido em ambos ∂
(
Ck1 ⊕C

k
2

)
e ∂

(
Ck1

)
⊕ ∂

(
Ck2

)
, ou não está contido em

nenhum deles. �

Definição 1.60 Seja Ck uma k − cadeia. Se existe uma (k + 1) − cadeia T k+1 tal que
Ck = ∂

(
T k+1

)
, então chamamos Ck de k − bordo.

Note que os k − bordo só estão definidos para k = 0,1. Por convenção, para k = 2

dizemos que somente ∅ é uma 2− bordo.

Definição 1.61 Seja Ck uma k− cadeia. Se ∂
(
Ck

)
= ∅, então chamamos Ck de k− ciclo.

Note que o k−ciclo só está definido para k = 1,2. Por convenção, dizemos que todas

as 0− cadeia são 0− ciclos.

Definição 1.62 Seja G uma grade. Duas k − cadeia Ck1 e Ck2 são ditas homólogas, escre-
vemos Ck1 ∼ C

k
2 , se Ck1 ⊕C

k
2 for uma k − bordo.

Proposição 1.63 Note que as seguintes propriedades são validas:

(a) Reflexiva: Ck ∼ Ck para toda k − cadeia.

(b) Simétrica: Se Ck1 ∼ C
k
2 , então Ck2 ∼ C

k
1 .

(c) Transitiva: Se Ck1 ∼ C
k
2 e Ck2 ∼ C

k
3 , então Ck1 ∼ C

k
3 .
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(d) Aditiva: Se Ck1 ∼ C
k
2 e Ck3 ∼ C

k
4 , então

(
Ck1 ⊕C

k
3

)
∼

(
Ck2 ⊕C

k
4

)
.

Lema 1.64 Todo 1− ciclo é a fronteira de exatamente duas 2− cadeias complementares
no plano.

Demonstração: Seja λ um 1− ciclo. Vamos provar, por indução sobre o número de

arestas de G, que existem ao menos duas 2− cadeia com fronteira λ.

Note que, uma grade com quatro arestas consiste num retângulo vazio. Então exis-

tem somente dois 1− ciclo, ∅ e o próprio retângulo. O 1− ciclo ∅ é fronteira para as

2− cadeia ∅ e todo o plano, enquanto o retângulo com interior vazio é a fronteira do

retângulo com interior cheio e da região do lado de fora do retângulo. Isso prova a

condição inicial.

Assuma que vale o lema para uma grade G dada e considere λ uma 1−ciclo na grade

G+ obtida por adicionarmos uma nova linha l em G.

Assuma, s. p. g., que a linha l é horizontal. Considere K uma 2− cadeia das regiões

de G+ nas quais os lados inferiores estão em λ e sobre l. Então ∂K irá conter os lados

de λ em l.

Seja µ = λ⊕∂K , então l não é uma aresta de µ. Além disso, note que, µ é uma 1−ciclo,

pois ∂µ = ∂λ+∂ (∂K) = ∅⊕ ∅ = ∅.
Por hipótese de indução, µ é a fronteira de pelo menos duas 2− cadeia S1 e S2. Seja

T1 = S1 ⊕ K e T2 = S2 ⊕ K . Então, ∂T1 = ∂S1 ⊕ ∂K = µ ⊕ ∂K = λ e, analogamente,

∂T2 = λ. Portanto, T1 e T2 são duas 2− cadeia com fronteira λ que são distintas, pois

S1 e S2 são distintas.

Vamos provar que λ pode ser fronteira de, no máximo, duas 2− cadeia. Seja T1 uma

2 − cadeia qualquer com fronteira λ e seja T2 uma 2 − cadeia com fronteira λ cons-

truı́da na primeira parte da prova. Temos que ∂ (T1 ⊕ T2) = ∂T1 ⊕ ∂T2 = λ ⊕ λ = ∅.
Então T1 ⊕ T2 é um 2− ciclo.

Note que os únicos 2 − ciclo são ∅ e o plano todo. Assim sendo, ou T1 ⊕ T2 = ∅ ou

T1 ⊕ T2 é o plano todo. No primeiro caso, T1 = T2, enquanto no segundo caso, T1 é

o complementar de T2. Portanto existem, no máximo, duas 2− cadeia com fronteira

λ. �

Definição 1.65 SejamG um subconjunto do plano e G uma grade emG. Duas k−cadeia
em G, Ck1 e Ck2 , são chamadas de homólogas em G, donotado por

Ck1 ∼ C
k
2 (em G)

se Ck1 ⊕C
k
2 é uma fronteira de uma (k + 1)− cadeia em G que está contida em G.
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Corolário 1.66 Sejam F um conjunto conexo e fechado eG o seu conjunto complementar
aberto. Seja G uma grade. Então todo 1−ciclo λ emG é a fronteira de uma cadeia (em G).
Em outras palavras, se o conjunto aberto G tem apenas um buraco, então todo 1− ciclo é
bordo de uma 2− cadeia (em G).

Demonstração: Pelo Lema (1.64), λ é a fronteira de duas complementares 2−cadeia
T1 e T2. Vamos mostrar que uma dessas 2− cadeia está contida em G. Suponha, por

absurdo, que T1 e T2 intersectam F. Então os conjuntos não-vazios F ∩ T1 e F ∩ T2

formam uma partição de F. Logo, todo ponto de F deve pertencer a um desses

conjuntos já que T1 ∪ T2 cobre todo o plano. Como F é conexo, por definição, um

desses conjuntos contém um ponto próximo ao outro. Consequentemente, F contém

um ponto da fronteira entre T1 e T2. Como a fronteira entre T1 e T2 é λ, temos que F

contém um ponto de λ. Absurdo, pois, por hipótese, λ ⊂ G. Portanto, G contém ou

T1 ou T2, e λ é a fronteira de uma 2− cadeia (em G). �

Corolário 1.67 Sejam F um conjunto fechado com duas componentes conexas e G o seu
conjunto complementar aberto. Seja G uma grade. Então

(a) G deve conter um 1− ciclo que não é fronteiras (em G).

(b) quaisquer dois 1− ciclos em G são homólogos (em G).

Demonstração:

(a) Seja F a união de duas componentes conexas F1 e F2. Considere um 1− ciclo λ
em G, pelo Lema (1.64) existem duas 2− cadeia T1 e T2 de modo que F1 ⊂ T1 e

F2 ⊂ T2. Como T1 e T2 intersectam F, então λ não é bordo de nenhuma cadeia

contida em G. Portanto, G contém um 1 − ciclo que não tem fronteiras em G.

Como ilustra Figura (1.13).
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Figura 1.13: Exemplo de λ

(b) Sejam λ e µ dois 1−ciclo em G que não são fronteiras de 2−cadeia (em G). Pelo

Lema (1.64), λ é fronteira de duas 2 − cadeia T1 e T2. Pelo mesmo argumento

do Corolário (1.66), as componentes F1 e F2 estão inteiramente contidas em T1

ou T2. Do fato de λ não ser fronteira de uma 2 − cadeia (em G), segue que F1

e F2 não podem ambas pertencer ao mesmo conjunto T1 e T2. Assim sendo,

podemos supor s. p. g., que F1 ⊂ T1 e F2 ⊂ T2. Analogamente, µ é a fronteira

de duas 2− cadeia complementares S1 e S2 e, novamente, podemos supor s. p.

g., que F1 ⊂ S1 e F2 ⊂ S2. Considere a cadeia T1 ⊕ S1. Claramente T1 ⊕ S1 é

disjunta de F2, pois T1 e S1 são disjuntas de F2. Mas, T1 ⊕ S1 é disjunto de F1,

pois cada 2− cadeia de F1 em G está contida em F1 e S1. Assim sendo, T1 ⊕ S1

é uma 2 − cadeia (em G). Mas ∂ (T1 ⊕ S1) = λ ⊕ µ e, portanto, quaisquer dois

1− ciclo em G são homólogos (em G).

�

Teorema 1.68 Sejam G um conjunto aberto do plano, G uma grade em G, e sejam P e
Q dois pontos de G que são vérticies de G. Então P ∼ Q (em G) se, e somente se, P e Q
podem ser conectados por uma cadeia poligonal em G.

Demonstração: ( =⇒ ) Por hipótese P ∼ Q (em G), ou seja, existe uma 1 − cadeia
C1

1 ∈ G tal que ∂
(
C1

1

)
= P ⊕Q. Note que, C1

1 é uma cadeia poligonal totalmente

contida emG tal que P eQ são suas extremidades. Logo, P eQ podem ser conectados

por uma cadeia poligonal em G.

(⇐=) Por hipótese P e Q podem ser conectados por uma cadeia poligonal γ ⊂ G.
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Note que γ é um 1 − cadeia, além disso, ∂(γ) = P ⊕ Q. Portanto, por definição,

P ∼Q (em G). �

Lema 1.69 Sejam E1 e E2 dois conjuntos compactos disjuntos. Então existe uma cons-
tante ε > 0 tal que se R é um ponto de E1 e S um ponto de E2, então

‖R− S‖ > ε.

Demonstração: Suponha, por absurdo, que para cada ε > 0 existe um par de pontos

R ∈ E1 e S ∈ E2 tais que ‖R− S‖ < ε, então, em particular, podemos achar sequências

de pontos {Rn} ⊂ E1 e {Sn} ⊂ E2 tais que ‖Rn − Sn‖ < 1
n . Segue da compacidade que

um dos conjuntos E1 ou E2 contém um ponto próximo ao outro. Do fato de E1 e E2

serem fechados, esse ponto pertence a ambos os conjuntos. Absurdo, pois E1 e E2

são disjuntos por hipótese. �

Lema 1.70 Sejam G1 e G2 dois conjuntos abertos com conjuntos complementares com-
pactos F1 e F2, respectivamente. Sejam G uma grade, P e Q dois pontos que são vértices
de G tais que

P ∼Q (em G1) P ∼Q (em G2)
Sejam λ1 e λ2 1− cadeia em G1 e G2, respectivamente, tais que ∂(λ1) = ∂(λ2) = P ⊕Q.
G contém λ1 e λ2 e

λ1 ∼ λ2 (em G1 ∪G2)

então em uma subdivisão adequada G+ de G temos

P ∼Q (em G1 ∩G2).

Demonstração: Por hipótese λ1 ⊕ λ2 é a fronteira de uma 2 − cadeia T em G1 ∪
G2. Então os conjuntos compactos T ∩ F1 e T ∩ F2 são disjuntos. Pelo Lema (1.69)

existe uma constante ε > 0 de modo que os pontos desses conjuntos sempre estão

separados por uma distância de pelo menos ε. Assim sendo, podemos subdividir

a grade G em uma grade G+ tal que alguma 2 − cadeia de G+ não intersecte nem

T ∩ F1 nem T ∩ F2. Conseguimos tudo isso adicionando um número suficiente de

linhas de modo que as arestas das 2 − cadeia da nova grade sejam menores que ε
2 .

Posteriormente, nos substituı́mos λ1, λ2 e T por suas subdivisões em G+. Seja S a

2− cadeia em G+ das faces de T que intersectam F2. Por construção, S é disjunto de

F1. Seja λ = λ1 ⊕∂(S). Como ∂(λ) = ∂(λ1)⊕∂(∂(S)) = P ⊕Q, então λ conecta P e Q.

Vamos provar que λ é disjunta de F1 e F2. Observe primeiro que λ1 e S são disjuntos
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de F1, consequentemente, λ é disjunto de F1. Além disso, note que T ⊕ S é disjunto

de F2, pois as faces de T que intersectam F2 estão em S e, portanto, se cancelam na

soma. Assim,

∂(S ⊕ T ) = ∂(S)⊕∂(T ) = ∂(S)⊕λ1 ⊕λ2 = λ⊕λ2

Consequentemente, λ = ∂(S ⊕ T )⊕λ2. Portanto, λ é disjunto de F2, pois S ⊕ T e λ2

são disjuntos de F2.

Disto e do Teorema (1.68) segue que P ∼Q (em G1 ∩G2). �

Teorema 1.71 Caminhos não dividem o plano.

Demonstração: Sejam γ um caminho e P e Q dois pontos que não pertencem a

γ . Suponha, por absurdo, que P e Q não podem ser conectados por um caminho

contido em um conjunto aberto G, onde G é o complementar de γ . Seja T uma

transformação topológica do intervalo [0,1] em γ . Sejam γ1 e γ2 duas “metades” de

γ que correspondem pela T aos intervalos
[
0, 1

2

]
e
[

1
2 ,1

]
. Vamos provar que uma des-

sas “metades”, γ1 ou γ2, também separam P e Q. Suponha, por absurdo, que nem

γ1, nem γ2, separam P e Q. Então, existem caminhos poligonais λ1 e λ2 conectando

P a Q sem intersectar γ1 e γ2, respectivamente. Note que podemos considerar λ1 e

λ2 como 1− cadeia em uma grade adequada. Sejam G1 e G2 os complementares de

γ1 e γ2, respectivamente. Então, λ1 ⊂ G1, λ2 ⊂ G2 e ∂ (λ1) = ∂ (λ2) = P ⊕Q. Como

G1 ∪G2 é o plano todo a menos do ponto de intersecção de γ1 e γ2, segue do Co-

rolário (1.67) que λ1 ∼ λ2 (em G1 ∪G2). Então pelo Lema (1.70) P ∼Q (em G1 ∩G2).

Absurdo, pois contradiz a hipótese de que γ separa P eQ, então concluı́mos que um

dos caminhos, γ1 ou γ2, separa P e Q.

Voltando ao problema inicial, podemos continuar dividindo o intervalo [0,1] em

“metades” e concluiremos que essas novas “metades” também dividem P deQ. Mas,

note que, essas divisões criam uma sequência de subintervalos de [0,1] que conver-

gem para um ponto S em γ . Então, os pontos P e Q são separados por pequenos

intervalos de γ contidos em qualquer vizinhança aberta de S. Absurdo!

Portanto, γ não separa P e Q. �

Teorema 1.72 (Teorema da curva de Jordan) Seja J uma curva de Jordan (qualquer
caminho fechado). Então, J ′ não é conexo, mas consiste de duas componentes conexas
disjuntas, uma das quais é limitada (chamada de interior) e a outra não é limitada (cha-
mada de exterior). A curva de Jordan J forma uma fronteira para ambos os lados.

Demonstração: Sejam P , Q e R três pontos em J ′. Suponha que todo caminho co-

nectando P eQ intersecta J ′, ou seja, P eQ estão em componentes conexas distintas
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de J ′. Analogamente, suponha queQ e R também estejam em componentes conexas

distintas de J ′. Vamos provar que existe um caminho entre P e R que não intersecta

J ′, ou seja, P e R estão na mesma componente conexa de J ′. Sejam A e B dois pon-

tos em J . Note que A e B determinam dois caminhos γ1 e γ2, cuja união é J e cuja

intersecção é o conjunto com os pontos A e B. Pelo Teorema (1.71) nem γ1 nem γ2

sozinhas dividem o plano. Assim sendo, existe uma grade G e 1− cadeias λ1,λ2,µ1 e

µ2 tais que ∂ (λ1) = ∂ (λ2) = P ⊕Q e ∂ (µ1) = ∂ (µ2) = Q ⊕R , µ1 e λ1 não intersectam

γ1 e µ2 e λ2 não intersectam γ2. Sejam G1 e G2 conjuntos abertos complementares a

γ1 e γ2, respectivamente, como ilustra a Figura (1.14)

Figura 1.14: Grade G

O 1− ciclo λ1⊕λ2 não pode ser uma fronteira em G1∪G2, pois pelo Lema (1.70) P

eQ poderiam ser conectados em G1∩G2, o que contraria a hipótese. Analogamente,

µ1 ⊕ µ2 não podem ser uma fronteira em G1 ∪G2. Como G1 ∪G2 é o complemento

do par de pontos {A,B}, segue do Corolário (1.67) que
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(λ1 ⊕λ2) ∼ (µ1 ⊕µ2) (em G1 ∪G2)

Em outras palavras, λ1⊕λ2⊕µ1⊕µ2 é uma fronteira em G1∪G2. Aplicando o Lema

(1.70) para as duas cadeias (λ1 ⊕µ1) e (λ2 ⊕µ2) temos que cada uma delas conecta

P a R em G1 e G2, respectivamente. Assim sendo, λ1 ⊕λ2 ⊕ µ1 ⊕ µ2 é uma fronteira

em G1∪G2. Portanto, concluı́mos que P e R podem ser conectados em G1∩G2 = J .

Consequentemente, P e R estão na mesma componente conexa de J ′. Portanto, J
divide o plano em no máximo duas componentes conexas.

Agora, vamos exibir dois pontos tais que todo caminho entre eles intersecta J . Se-

jam A e B dois pontos quaisquer em J . Note que A e B determinam dois caminhos

γ1 e γ2, cuja intersecção é o conjunto com os ponto A e B. Seja σ uma grade ao

redor de A que não contenha B. Os caminhos γ1 e γ2 intersectam um ponto den-

tro de σ e o outro fora de σ , logo pelo Lema (1.64), eles intersectam σ . Como σ e

J se intersectam, vamos mostrar que σ contém pontos de “ambos os lados” de J ,

pontos esses que não podem ser conectados por um caminho que não intersecta J .

Seja G uma grade na qual σ é uma 1 − cadeia e de tal modo que nenhum lado de σ

intersecte ambos os conjuntos γ1 e γ2. Seja λ a 1− cadeia que consiste dos lados de

σ que intersectam γ2. Por construção, λ é não vazio. Ao mesmo tempo λ não pode

ser toda a grade σ , pois σ intersecta γ1. Então, ∂(λ) , ∅mas consiste de um número

par de vértices. Organize esses vértices em pares P1,Q1;P2,Q2; . . . ;Pn,Qn. Note que

nenhum desses vértices está em J , pois qualquer vértice de σ em J estará em dois

lados de λ. Afirmamos que pelo menos um desses pares é separado por J . De fato,

suponha, por absurdo, cada um desses pares de pontos pode ser conectados por um

caminho que não intersecte J . Então, em uma subdivisão adequada G+ esses cami-

nhos poligonais serão todos 1− cadeias, digamos µ1,µ2, . . . ,µn, onde ∂(µ1) = P1 ⊕Q1,

∂(µ2) = P2 ⊕Q2, . . ., ∂(µn) = Pn ⊕Qn. Seja µ = µ1 ⊕ · · · ⊕ µn, então ∂(µ) = ∂(λ). Conse-

quentemente, λ⊕µ é um 1−ciclo. Sejam G1 e G2 conjuntos abertos complementares

a γ1 e γ2, respectivamente. Como µ e λ não intersectam γ1, temos que µ⊕ λ é um

1 − ciclo em G1. Pelo Corolário (1.66), λ ⊕ µ é uma fronteira em G1. A 1 − cadeia
µ⊕λ⊕σ é um 1− ciclo. Por construção, λ⊕σ não intersectam γ2 pois os lados de σ

que intersectam γ2 são cancelados na soma. Assim sendo, µ⊕λ⊕ σ é uma fronteira

em G2. Segue de que

σ = (λ⊕µ)⊕ (λ⊕µ⊕ σ )

é uma fronteira em G1 ∪G2. Mas G1 ∪G2 é o plano todo menos os pontos A e B.
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Absurdo, pois a grade σ foi escolhida de modo a não ser uma fronteira em G1 ∪G2.

Portanto, J divide o plano em pelo menos duas componentes conexas.

Temos então que J divide o plano em duas componentes R1 e R2. Como J é fe-

chada, temos que R1 e R2 são abetos e, consequentemente, não contem suas frontei-

ras. Assim sendo, as fronteiras de R1 e R2, denotadas respectivamente por b(R1) e

b(R2), são tais que b(R1) ⊂ R2 ∪J e b(R2) ⊂ R1 ∪J . Mas, pontos de R1 não podem

estar próximos de R2 (e vice-versa), pois eles são abertos. Assim sendo, b(R1) e b(R2)

são subconjuntos de J . Note que um ponto arbitrário A de J está próximo de R1 e

R2. Então J é uma fronteira para ambas as partes.

Como J é limitado, está contido em um disco. Então exatamente uma dessas regiões

R1 ou R2 vai conter o conjunto conexo dos pontos fora desse disco e, portanto, será

ilimitado. A outra região determinada por J será limitada. Portanto, uma das

regiões será limitada e a outra ilimitada. �
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2.1 Complexos

Definição 2.1 Uma n-célula é um conjunto cujo interior é homeomorfo a um disco n −
dimensional Dn � {x ∈ Rn : ‖x‖ < 1} com a propriedade adicional que sua fronteira deve
ser dividida em um número finito de células de dimensão menor, chamadas de faces da
n-célula. Escrevemos σ < τ se σ é uma face de τ .

• Uma 0-célula é um ponto ou vértice A;

• Uma 1-célula é um segmento de reta a = AB tal que A < a, B < a;

• Uma 2-célula é um polı́gono σ = ABC, em particular um triângulo, tal queAB,AC,BC <
σ . Note que, A < AB < σ , portanto A < σ ;

• Uma 3-célula é um poliedro sólido tal que polı́gonos, arestas e vértices são faces.

Note que as faces de uma n-célula são células de menor dimensão. A fronteira

de uma 1-célula ou aresta são 0-células ou vértices, a fronteira de uma 2-célula ou

polı́gono são 1-células ou arestas e 0-células ou vértices; essas células vão se juntar

para formarem complexos.

Células são “coladas” juntas para formarem complexos, colando aresta a aresta e

vértice a vértice e identificando células de dimensão maior de uma maneira similar.

Definição 2.2 Um complexo K é um conjunto finito de células,

K �
⋃
{σ : σ é uma célula}

tal que:

1. Se σ é uma célula em K , então todas as faces de σ são elementos de K ;

2. Se σ e τ são células em K , então int(σ )∩ int(τ) = ∅.

Um complexo de dimensão k é chamado de k − complexo.
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Definição 2.3 Seja K um complexo. O conjunto de todos os pontos nas células de K é

|K | � {x : x ∈ σ ∈ K, onde σ é uma célula de K}

o qual chamaremos de espaço de realização de K .

A diferença entre um espaço e um complexo é que K é um conjunto de células e

|K | é um conjunto de pontos. Complexos são uma espécie de camadas estruturadas,

construı́das de células de diversas dimensões.

Definição 2.4 Seja K um complexo. O k − esqueleto de K é

Kk � {k − células de K}

Note que Kk é um k − complexo e K =
n⋃
k=1

Kk, onde n = dim(K).

Uma estrutura topológica deve ser definida para complexos, definindo vizinhanças

para todos os pontos em |K |. Se K é um complexo, então cada célula em K é ho-

meomorfa a uma bola n − dimensional em Rn. Construiremos um novo espaço to-

pológico a partir da união de células usando a topologia de identificação, definida

para 2− complexos a seguir.

Definição 2.5 2 − complexos possuem três tipos de pontos: pontos no interior de um
dos polı́gonos, pontos no interior de uma das arestas e pontos vértices. Vamos definir
vizinhanças para cada tipo de ponto separadamente. Em geral, começamos com um con-
junto de polı́gonos P = {Pi}.

• Pontos no interior dos polı́gonos: Se um ponto x está no interior de um polı́gono
Pi , então defina a vizinhança de x como sendo qualquer disco totalmente contido no
interior de Pi ;

• Pontos no interior das arestas: Se um ponto y está em uma aresta b a qual não faz
parte de uma fronteira de qualquer polı́gono, então defina a vizinhança de y como
qualquer intervalo aberto contido no interior de b. Se y é um ponto numa aresta a,
onde a é composta por uma coleção de arestas a1, a2, . . . , an de polı́gonos {Pi}n1, então
podemos assumir que essa colagem foi feita de forma a respeitar a direção escolhida
nas arestas. Primeiramente, encontramos os pontos que juntos formam o ponto y.
Note que cada aresta é topologicamente equivalente ao intervalo unitário I = [0,1]

e, então, existem homeomorfismos da aresta a para o intervalo I e de I para cada
aresta ai , escolhendo de maneira aos pontos iniciais das arestas irem a 0 e os pontos
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finais a 1. Seja fi : a → ai a composição de homeomorfismos, para i = 1,2, . . . ,n.
Então o ponto y corresponde aos pontos yi = fi(y), i = 1,2, . . . ,n. Cada ponto yi
esta na aresta ai em algum polı́gono Pi e tem uma vizinhança de meio-disco nesse
polı́gono. Esses meio-discos podem ser escolhidos de forma a não sobreporem uns
aos outros, não incluı́rem nenhum vértice e terem o mesmo raio. Quando as arestas
a1, a2, . . . , an são coladas para formar a aresta a, os meio-disco também são colados
ao longo do seu diâmetro e criam uma vizinhança para cada ponto nas arestas do
complexo K .

• Pontos de vértice: Seja B um vértice no complexo K , formado pela identificação
dos vértices B1,B2, . . . ,Bn de um conjunto de polı́gonos e arestas. Cada vértice Bi
está ou em um desses polı́gonos ou em uma aresta, a qual não faz parte de nenhum
desses polı́gonos. Se Bi está em um polı́gono, escolha a topologia relativa de Bi no
polı́gono e note que isso será visto como o setor de um disco. Esses setores circulares
devem ser escolhidos de maneira a não sobreporem uns aos outros, não intersectarem
outros vértices e terem o mesmo raio. Se Bi está em uma aresta, então a topologia
relativa de Bi é um semi-intervalo com Bi no final. Após construirmos o complexo
K , esses setores e intervalos semi-abertos são colados para formar a vizinhança de
B.

Note que as vizinhanças de pontos nos complexos, nesta topologia, nem sempre

são discos.

2.2 Superfı́cies

Definição 2.6 Uma n−variedade ( ou variedade de dimensão n) é um espaço topológico
tal que cada ponto x tem uma vizinhança homeomorfa a um disco aberto n−dimensional
com centro em x e raio r, ou seja, Dn(x,r) � {y ∈ Rn : ‖x − y‖ < r}.

Vamos também assumir que para quaisquer pontos distintos tenhamos vizinhanças

disjuntas. Variedades de dimensão 2 são, geralmente, chamadas de superfı́cies.

Definição 2.7 Uma n − variedade com fronteira é um espaço topológico tal que cada
ponto tem uma vizinhança topologicamente equivalente ou a um disco aberto de dimensão
n, Dn(x,r), ou a um meio-disco Dn+ � {x = (x1,x2, . . . ,xn) ∈ Rn : ‖x‖ < r e xn > 0}. Pontos
cuja vizinhança é um meio-disco são chamados de pontos de fronteira.

Definição 2.8 Uma superfı́cie não-orientada é aquela que contém uma faixa de Möbius.
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Exemplo 2.9 Um exemplo de superfı́cie não-orientada é a garrafa de Klein. Como ilustra
a Figura (2.1), sua representação planar

Figura 2.1: Garrafa de Klein com faixa de Möbius.

contém uma faixa de Möbius.

Na Tabela (2.1) consideramos algumas superfı́cies e caracterı́sticas relacionadas a

elas, note primeiramente que todas as caracterı́sticas descritas acima são proprieda-

des topológicas.

Superfı́cie Fronteira Concavidade Alça Orientada
Esfera não sim não sim
Toro não sim sim sim

Cilindro sim não não sim
Faixa de Möbius sim não não não
Garrafa de Klein não não sim não

Tabela 2.1: Classificação de algumas superfı́cies.

Além disso, essas superfı́cies listadas caracterizam completamente todas as su-

perfı́cies a menos de homeomorfismos (esse resultado será provado posteriormente).

Por outro lado, falta considerar superfı́cies como a da Figura (2.2),
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Figura 2.2: Toro com duas alças.

a qual chamaremos de toro com duas alças. Podemos construir toros para um

número qualquer de alças.

Definição 2.10 Sejam S1 e S2 duas superfı́cies. Removendo um pequeno disco aberto de
cada uma das superfı́cies e colando as fronteiras desses discos obtemos uma nova superfı́cie
chamada de soma conexa de S1 e S2, escrevemos S1#S2.

A Figura (2.3) representa o plano projetivo, o qual denotaremos por P2. Note que

existe uma faixa de Möbius em P2, então a superfı́cie é não orientada.

Figura 2.3: Diagrama do plano projetivo.
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2.3 Triangulação

Geralmente é uma vantagem usar células triangulares em um complexo, de modo

que só tenhamos um tipo de n-célula. Objetos triangulares têm a boa propriedade

de que o número de vértices identifica a dimensão da célula.

Definição 2.11 Seja X um espaço topológico de dimensão 2. Dizemos que X é trian-
gulável se podemos encontrar um 2−complexo K tal que X = |K | e K tem somente células
triangulares satisfazendo a condição de que quaisquer dois triângulos são identificados
ou ao longo de uma aresta, ou em um único vértice, ou são disjuntos. Um complexo tri-
angular K é chamado de complexo simplicial ou triangulação de X. Uma célula de um
complexo simplicial é chamada de simplexo.

Note que a Definição (2.11) implica mais que o espaço possa ser dividido em

triângulos. Na Figura (2.4) temos um exemplo de complexo celular somente com

2-células triangulares, mas que não é uma triangulação.

Figura 2.4: Exemplo 2− complexo.

Ainda sobre a Definição (2.11), note que essa definição implica não somente que

o complexo será dividido em triângulos, mas com a condição adicional exigida, te-

mos que cada vértice, aresta e triângulo podem ser unicamente rotulados por uma

atribuição de um rótulo em cada vértice.
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Mais geralmente, gostarı́amos de triangular um complexo qualquer. Cada face

de um 2 − complexo é um polı́gono e pode ser facilmente dividida em triângulos,

adicionando um novo vértice no interior do polı́gono e conectando esse vértice a

cada um dos vértices da fronteira, como ilustra a Figura (2.5).

Figura 2.5: Exemplo de triangulação de um polı́gono.

Contudo, podemos notar que esse processo descrito acima nos dá um método de

dividir qualquer 2− complexo em triângulos, mas isso não nos dá uma triangulação

satisfazendo a Definição (2.11). Como ilustra a Figura (2.6).

Figura 2.6: Divisão em triângulos.
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Definição 2.12 Seja K um 2−complexo com 2-células triangulares. Um novo complexo
K ′ chamado de subdivisão baricêntrica deK é formado pela introdução de um novo vértice
no centro de cada triângulo e um novo vértice no ponto médio de cada aresta, então
adicionamos novas arestas conectando o vértice central a cada um dos vértices no ponto
médio e os vértices originais. Em geral podemos descrever esse processo como criar um
novo vértice vσ no centro de cada célula σ em K , incluindo qualquer vértice P quando
definimos vP � P , e adicionamos uma célula conectando vσ a vτ , sempre que σ < τ .

A subdivisão baricêntrica nem sempre nos dá uma triangulação de um 2−complexo
com faces triangulares. A segunda divisão baricêntrica sempre é suficiente. Agora

vamos definir em uma superfı́cie uma estrutura combinatorial.

Definição 2.13 Uma superfı́cie triangulada (sem fronteira) é um 2−complexo simplicial
tal que:

1. Cada aresta é identificada com exatamente uma outra aresta;

2. Em cada conjunto βk dos triângulos que possuem apenas um vértice em comum
V , podemos rotular esses triângulos por T1k ,T2k , . . . ,Tnk , onde nk é o número de
triângulos em βk. Além disso, uma aresta de T1k que contém o vértice V será iden-
tificada apenas com uma aresta de T2k . A outra aresta de T2k que contém o vértice
V será identificada apenas com uma aresta de T3k e, assim, sucessivamente, até que
identifiquemos a aresta restante de Tnk com uma aresta de T1k .

A condição (1) da Definição (2.13) garante que pontos em uma aresta pertencem

exatamente a dois triângulos e, então, existe uma vizinhança em forma de disco

para cada ponto nas arestas, resultando de dois meio-discos colados juntos, um em

cada triângulo. A condição (2) da Definição (2.13) garante que a vizinhança de um

vértice parece com um disco.

Teorema 2.14 Uma superfı́cie é compacta se, e somente se, qualquer triangulação usa
um número finito de triângulos.

Demonstração: ( =⇒ ) Seja S uma superfı́cie compacta, suponha, por absurdo, que

S tem um complexo simplicial com um número infinito de triângulos. Como S é

uma superfı́cie enriquecida com uma estrutura combinatorial, pela Definição (2.13),

existe somente uma quantidade finita de triângulos em cada vértice. Assim sendo,

se existe uma quantidade infinita de triângulos, então existe um número infinito

de vértices, sobre os quais podemos considerar a sequência {vi}∞i=1. Como S é com-

pacta, temos, por definição, que essa sequência tem um ponto limite v ∈ S. Se v
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estiver no interior de algum triângulo, então v tem uma vizinhança totalmente con-

tida no interior desse triângulo, mas isso contradiz o fato de v ser o ponto limite

de um conjunto de vértices. Se v está ao longo de uma aresta, então v tem uma

vizinhança tomada de dois triângulos, a qual não contém nenhum outro vértice,

então, novamente, temos uma contradição. Se v é um vértice, então v é o vértice dos

triângulos T1,T2, . . . ,Tn e tem sua vizinhança composta de setores desses triângulos e

essa vizinhança não contém nenhum outro vértice. Então, não existe nenhum outro

vértice na vizinhança de v. Essa contradição implica que só existe uma quantidade

finita de vértices e, portanto, uma quantidade finita de triângulos.

(⇐=) Seja S uma superfı́cie construı́da a partir de uma quantidade finita de triângulos.

Seja {xi}∞i=1 uma sequência de pontos em S. Como existe somente uma quantidade

finita de triângulos e uma quantidade infinita de pontos dessa sequência, algum

triângulo T contém um número infinito de pontos. Seja {x′i}
∞
i=1 uma subsequência

de {xi}∞i=1 em T . Um triângulo é um subconjunto fechado e limitado de R2, então

pelo Teorema de Heine-Borel, T é compacto. Consequentemente, a subsequência

{x′i}
∞
i=1 tem um ponto limite x ∈ T ⊂ S. Assim, x é um ponto limite para a sequência

{xi}∞i=1. Portanto, S é compacta. �

Teorema 2.15 Uma superfı́cie é conexa se, e somente se, toda triangulação pode ser orde-
nada na forma T1,T2, . . . ,Tn com cada triângulo tendo pelo menos uma aresta identificada
com o triângulo seguinte na sequência.

Demonstração: ( =⇒ ) Seja S uma superfı́cie conexa com uma dada triangulação.

Escolha T1 como sendo um triângulo qualquer. Como triângulos são conexos, T1 é

conexo. Como S é uma superfı́cie conexa, existe um triângulo T2 o qual é colado a T1

ao longo de uma aresta, formando um complexo conexo com dois triângulos. Então

escolha T3 colado ao longo de uma aresta do complexo formado por T1 ∪colagem T2,

assim T1 ∪colagem T2 ∪colagem T3 é conexo. Continue o processo até envolver todos os

triângulos da superfı́cie S. Como S é conexa, esse processo continuará contando que

tenham arestas e triângulos livres.

(⇐=) Vamos provar a contra-positiva. Seja S uma superfı́cie não conexa, então S

tem, pelo menos, duas componentes conexas. Seja T1,T2, . . . ,Tk os triângulos da pri-

meira componente conexa de S e Tk+1,Tk+2, . . . ,Tn os triângulos da segunda compo-

nente conexa. Note que Tk+1 não esta colado a nenhum dos triângulos T1,T2, . . . ,Tk,

pois eles estão em componentes conexas diferentes. Portanto, não podemos colo-

car os triângulos na ordem T1,T2, . . . ,Tn com cada triângulo tendo pelo menos uma

aresta identificada com o triângulo seguinte na sequência. �
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2.4 Classificação de superfı́cies

Agora, vamos caracterizar completamente todas as superfı́cies compactas sem fron-

teira.

Teorema 2.16 Toda superfı́cie compacta e conexa é homeomorfa ou a uma esfera, ou a
soma conexa de toros ou a soma conexa de planos projetivos.

Demonstração:
Passo 1: Construção de um modelo planar para a superfı́cie
Seja S uma superfı́cie, suponha que S é representada por um complexo triangulado.

Como S é uma superfı́cie compacta, então, pelo Teorema (2.14), todo complexo sim-

plicial em S tem somente um número finito de triângulos. Como S é conexa, então,

pelo Teorema (2.15), temos que a lista de triângulos pode ser colocada numa ordem

de modo que cada triângulo é colado ao seu sucessor na ordem. Existem diversas

maneiras de ordenar os triângulos, então coloque-os em uma ordem qualquer para

formar o polı́gono que é a representação planar da superfı́cie. Os vértices externos

do polı́gono devem ser colados para formar a superfı́cie. Como S é um superfı́cie,

cada aresta é identificada a exatamente uma outra aresta. As arestas do interior já

estão identificadas, então as externas devem ser identificadas em pares.

Passo 2: Um atalho
Se uma sequência de arestas ocorre duas vezes exatamente na mesma ordem, le-

vando em consideração as direções das arestas, podemos juntar todas as arestas

dessa sequência em uma única aresta, como ilustra a Figura (2.7)

Figura 2.7: Simplificando um rótulo.

Fonte: [7], p. 80.

Note que arestas podem ocorrer de duas formas: pares opostos ou pares torcidos. Se

percorrermos ao longo do perı́metro em qualquer sentido, pares torcidos aparecerão
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na mesma direção, enquanto que pares opostos aparecerão com direções opostas.

Passo 3: Eliminando pares opostos adjacentes
Pares opostos adjacentes podem ser eliminados colando-os juntos, como ilustra a

Figura (2.8)

Figura 2.8: Eliminando pares opostos adjacentes.

Fonte: [7], p. 81.

Note que se existem somente arestas formando pares opostos adjacentes, então a

superfı́cie S é uma esfera S2.

Passo 4: Eliminando todos a menos de um vértice
Escolha qualquer um dos vértices presentes no polı́gono e realize o processo que

remove os outros vértices um a um, como ilustra a Figura (2.9)

Figura 2.9: Eliminando o vértice Q a favor do vértice P .

Fonte: [7], p. 82.

Assim, ao remover um vértice especifico será adicionado mais um vértice com um

rótulo diferente daquele que foi escolhido para ser removido. Repetimos esse pro-

cesso até sobrarem apenas vértices com o mesmo rótulo.

Passo 5: Coletando pares torcidos
Podemos fazer pares torcidos de arestas tornarem-se pares torcidos adjacentes e

então eliminá-los, como ilustra a Figura (2.10)

41



2 Parte 2

Figura 2.10: Colocando pares torcidos juntos.

Fonte: [7], p. 83.

Se, após completarmos esse passo tantas vezes quanto necessário, não existirem

mais arestas de nenhum outro tipo, então a superfı́cie S é a soma conexa de planos

projetivos P2.

Passo 6: Coletando pares de pares opostos
Se os Passos 1 e 5 foram realizados, então quaisquer pares opostos devem aparecer

em pares. Então podemos fazer pares opostos de arestas aparecerem juntos, como

ilustra a Figura (2.11)

Figura 2.11: Colocando pares opostos juntos.

Fonte: [7], p. 84.

Se ao realizar o processo para coletar pares opostos tantas vezes quanto necessário

não existirem pares torcidos de arestas, então a superfı́cie S é a soma conexa de to-
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ros T2.

Passo 7: Combinações de T2 e P2

Nesse ponto, ou a superfı́cie já foi classificada ou o diagrama planar contem em-

parelhamentos de pares torcidos e opostos, então a superfı́cie é a soma conexa de

planos projetivos e toros. Esse caso é resolvido utilizando a seguinte igualdade T2 #

P2 = P2#P2#P2, como ilustra a Figura (2.12).

Figura 2.12: T2 # P2 = P2#P2#P2.

Fonte: [7], p. 85.

Assim, a combinação de toros e planos projetivos podem ser convertidas na soma

conexa de planos projetivos somente. �

Uma superfı́cie triangulada com fronteira é um espaço topológico obtido de um

conjunto de triângulos com arestas e vértices identificados como os das superfı́cies

da Definição (2.13), exceto para alguns vértices e arestas que não são identificados.

Essas arestas não identificadas formam a fronteira da superfı́cie. Superfı́cies com

fronteira podem ser classificadas através de uma extensão do Teorema (2.16). Pri-

meiramente, vamos dar uma definição combinatorial para superfı́cies com fronteira.

43



2 Parte 2

Definição 2.17 Uma superfı́cie triangulada com fronteira é um espaço com um 2 −
complexo simplicial tal que:

1. Cada aresta no interior é identificada com exatamente uma outra aresta;

2. Em cada conjunto βk dos triângulos que possuem apenas um vértice em comum
V , podemos rotular esses triângulos por T1k ,T2k , . . . ,Tnk , onde nk é o número de
triângulos em βk. Além disso, uma aresta de T1k que contém o vértice V será iden-
tificada apenas com uma aresta de T2k . A outra aresta de T2k que contém o vértice
V será identificada apenas com uma aresta de T3k e, assim, sucessivamente, até que
identifiquemos a aresta restante de Tnk com uma aresta de T1k .

3. Nenhuma aresta que não esta na fronteira pode ter ambos os vértices na fronteira.

A condição (3) da Definição (2.17) é adicionada para que seja possı́vel identificar

claramente os vértices e arestas que estão na fronteira. Se os vértices A e B estão na

fronteira, então a aresta AB deve estar na fronteira.

Teorema 2.18 Uma superfı́cie compacta e conexa com fronteira é topologicamente equi-
valente ou a uma esfera, ou a soma conexa de toros ou a soma conexa de planos projetivos,
com um número finito de discos abertos removidos.

Demonstração: Aplicando uma subdivisão baricêntrica, se necessário, no complexo

simplicial podemos garantir que a Definição (2.17) será satisfeita. Construa um mo-

delo planar para a superfı́cie. Cole todos os triângulos que possuem vértices ou

arestas na fronteira para formar o diagrama planar da região da superfı́cie que en-

volve a fronteira. Se a fronteira tem mais de uma componente será necessário fazer

esse processo mais de uma vez. Posteriormente, cole todos esse diagramas plana-

res e triângulos que não estão na fronteira para formar o diagrama da superfı́cie, o

qual terá buracos no interior. As outras arestas estão identificadas aos pares. Rea-

lize os passos da demonstração do Teorema (2.16) tomando cuidado para não cortar

nenhuma componente da fronteira. Como no Teorema (2.16) obtemos as formas

desejadas, mas com buracos topologicamente equivalentes a discos. �

2.5 Invariantes topológicos

No Teorema (2.16) provamos que todas as superfı́cies sem fronteira podem ser

classificadas em três tipos: a esfera, somas conexas de toros e somas conexas de

planos projetivos. Nós não provamos, ainda, que esses três tipos de superfı́cies são
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realmente diferentes e esse é o nosso próximo objetivo. Vamos introduzir um sim-

ples invariante topológico: a caracterı́stica de Euler. Esse é o primeiro passo para a

algebrização da topologia: encontrar alguma ferramenta algébrica que caracteriza a

estrutura topológica do espaço.

Definição 2.19 Uma quantidade α é um invariante topológico se, sempre que X e Y
forem topologicamente equivalentes, então α(X) = α(Y ).

Idealmente, gostarı́amos de um invariante topológico que satisfaça a condição de

que se α(X) = α(Y ), então X e Y são topologicamente equivalentes. Veremos que a

caracterı́stica de Euler é muito simples para conseguir isso.

2.6 Grafos

Antes de tentarmos estabelecer invariantes topológicos em superfı́cies, vamos con-

siderar 1− complexos.

Definição 2.20 Um grafo, Γ , é um 1− complexo conexo.

Grafos são constituı́dos somente de vértices e arestas. Quaisquer dois vértices em

um grafo são conectados por algum caminho ao longo das arestas e vértices do grafo.

A Figura (2.13) exibe alguns exemplos de grafos.

Figura 2.13: Exemplos de grafos.

Note que alguns grafos da Figura (2.13) tem loops ou ciclos: caminhos em um grafo

que começam e terminam em um mesmo vértice.
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Definição 2.21 Uma árvore, T , é um grafo que não possui ciclos.

Gostarı́amos de definir um invariante topológico que possa distinguir as árvores

dos outros tipos de grafos.

Definição 2.22 Seja Γ um grafo, definimos por χ(Γ ) � v−e, onde v é o número de vértices
e e é o número de arestas, a caracterı́stica de Euler de Γ .

Teorema 2.23 Seja T uma árvore. Então χ(T ) = 1.

Demonstração: Faremos um prova por indução no número de arestas de T . Note

que se e = 0, então a árvore T consiste de um único vértice, assim v = 1. Nesse

caso, χ(T ) = v − e = 1 − 0 = 1. Assuma que o teorema seja verdadeiro para todas

as árvores com menos de n arestas, e seja T uma árvore tal que e = n. Seja a uma

aresta arbitrária, remova a aresta a da árvore T e, note que, teremos duas árvores

desconexas T1 e T2. Como ilustra a Figura (2.14).

Figura 2.14: Remover aresta de uma árvore.

Note que esse fato segue de que se T \ {a} não for desconexo, então existe outra

aresta conectando os pontos desconectados em T \ {a}. Entretanto, essa aresta junta-

mente com a aresta a formam um loop e isso contradiz o fato de que T é uma árvore.

Assim as árvores T1 e T2 tem menos de n arestas, então pela hipótese de indução,

χ(T1) = v1 − e1 = 1

χ(T2) = v2 − e2 = 1
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Note que cada vértice de T está ou em T1 ou em T2, mas não em ambos, assim,

v = v1 + v2. As arestas de T consistem na aresta a, nas arestas de T1 e nas arestas de

T2, então e = 1 + e1 + e2. Então,

χ(T ) = v − e

= (v1 + v2)− (1 + e1 + e2)

= (v1 − e1) + (v2 − e2)− 1

= 1 + 1− 1 = 1.

�

Todas as árvores tem a mesma caracterı́stica de Euler. Entretanto, isso não nos

mostra que todas as árvores são topologicamente equivalentes, mas nos mostra al-

guma coisa sobre a forma das árvores. O próximo teorema nos dará informações

sobre a caracterı́stica de Euler para grafos que contém loops.

Teorema 2.24 Seja Γ um grafo com n loops (ou ciclos) distintos. Então χ(Γ ) = 1−n.

Demonstração: Para cada um dos n ciclos em Γ , podemos remover uma aresta sem

desconectar o grafo, pois cada ciclo implica em uma redundância de caminhos en-

tre dois vértices. Após fazermos isso, teremos um novo grafo sem nenhum ciclo, ou

seja, uma árvore T . Assim, pelo Teorema (2.23), χ(T ) = 1. Note que a árvore T não

é única, mas ela contém todos os vértices de Γ , com n arestas a menos. Consequen-

temente,

1 = χ(T ) = v − (e −n) = (v − e) +n = χ(Γ ) +n.

Portanto, χ(Γ ) = 1−n. �

A caracterı́stica de Euler não mostra uma descrição precisa do grafo, mas nos mos-

tra informação importantes sobre sua forma. O próximo teorema nos mostra que a

caracterı́stica de Euler é um invariante topológico.

Teorema 2.25 Sejam Γ1 e Γ2 grafos topologicamente equivalentes. Então χ(Γ1) = χ(Γ2).

Demonstração: Por hipótese, temos que |Γ1| e |Γ2| são homeomorfos. Um vértice

que se conecta somente com uma aresta será chamado de vértice final. Um vértice

com mais de duas arestas (neste caso, arestas que começam e terminam no mesmo

vértice contam duas vezes) será chamado de vértice ramificado. Note que homeo-

morfismos levam vértices finais em vértices finais e vértices ramificados em vértices
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ramificados com o mesmo número de arestas neles. Assim, os vértices finais e os

vértices ramificados de Γ1 e Γ2 coincidem. Seja Γ um grafo obtido adicionando os

vértices de Γ1 em Γ2, ou vice-versa. Note que adicionar vértices no meio de uma

aresta não muda a caracterı́stica de Euler do grafo. Assim, Γ1 e Γ2 tem a mesma

caracterı́stica de Euler de Γ , então χ(Γ1) = χ(Γ2). �

2.7 A caracterı́stica de Euler e o problema de colorir

mapas

Vamos definir a caracterı́stica de Euler, que é um importante invariante topológico,

de uma maneira mais generalizada.

Definição 2.26 A caracterı́stica de Euler de um complexo K de dimensão n é dada por

χ(K) =
n∑
k=0

(−1)k#k,

onde #k é o número de k-células em um complexo K .

Em particular, se considerarmos 2 − complexos, ou seja, superfı́cies, obtemos a se-

guinte fórmula para a caracterı́stica de Euler

χ(K) = v(K)− e(K) + f (K),

onde K é um 2 − complexo, v(K) é o número de vértices de K , e(K) o número de

arestas de K e f (K) o numero de faces de K .

Teorema 2.27 Se |K | e |L| são superfı́cies compactas, conexas e |K | � |L|, então χ(K) =

χ(L).

Definição 2.28 Se S é uma superfı́cie compacta, conexa e S � |K | para um complexo K ,
defina χ(S) � χ(K).

Pelo Teorema (2.27) temos que χ(S) está bem definida, e posteriormente, que a ca-

racterı́stica de Euler de uma superfı́cie é um invariante topológico.

O próximo resultado relaciona a caracterı́stica de Euler da soma conexa de su-

perfı́cies com a caracterı́stica de Euler de ambas as superfı́cies.
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Corolário 2.29 χ(S1#S2) = χ(S1) +χ(S2)− 2.

A Tabela (2.2) nos fornece a caracterı́stica de Euler de algumas superfı́cies.

Superfı́cie χ
S2 2
T2 0
K2 0
P2 1

Faixa de Möbius 2

Tabela 2.2: Caracterı́stica de Euler de algumas superfı́cies.

Teorema 2.30 Toda superfı́cie compacta e conexa é homeomorfa a exatamente uma das
seguintes: S2, n.T2, ou n.P2

Demonstração: Pelo Teorema da classificação de superfı́cies (2.16) é suficiente mos-

trar que S2, n.T2, e n.P2 são topologicamente distintas. Pela Tabela (2.2) e Corolário

(2.29), temos que:

1. χ(S2) = 2;

2. χ(n.T2) = 2− 2n;

3. χ(n.P2) = 2−n.

O único caso de sobreposição ocorre quando χ(n.T2) = χ(2n.P2). Em outras palavras,

pelo Teorema (2.27), precisamos mostrar que n.T2 não é homeomorfa a 2n.P2. De

fato, observe que n.T2 tem um campo vetorial normal continuo apontando para

fora com n.T2 ⊂ R3, e então n.T2 não contém umma faixa de Möbius. Contudo, P2

contém uma faixa de Möbius, e então P2#S também contém uma faixa de Möbius

para qualquer superfı́cie S. Em particular, 2n.P2 contém uma faixa de Möbius, e

consequentemente n.T2 não é homeomorfa a 2n.P2. �

Agora temos as ferramentas para identificar e distinguir superfı́cies. Com o Teo-

rema da classificação de superfı́cies (2.16), mostramos que todas as superfı́cies po-

dem ser reduzidas a um dos três tipos. Com os Teoremas (2.27) e (2.30), mostramos

que essas três classes de superfı́cies são as únicas superfı́cies compactas e conexas

distintas.

A seguir daremos uma aplicação para a caracterı́stica de Euler.

49



2 Parte 2

Um mapa geográfico pode ser visto como um complexo com vértices, arestas e faces.

O problema é colorir o mapa.

Definição 2.31 Uma coloração boa de um mapa é uma tal que faces adjacentes não pos-
suem a mesma cor.

Queremos saber o número de cores necessárias para que exista uma coloração boa

para um mapa. O Lema (2.32), cuja demonstração pode ser encontrada em [7], nos

dá um limitante superior para esse número.

Lema 2.32 Seja S uma superfı́cie, S = |K |, onde o complexo K tem e(K) arestas e f (K)

faces. Se
2e(K)
f (K)

< N , então N cores são suficientes para colorir o mapa em S determinado

por K .

Agora temos um limitante superior para o número de cores de uma coloração boa

em uma superfı́cie em termos da quantidade de arestas e faces do complexo asso-

ciado a essa superfı́cie. A seguir mostraremos a relação entre
2e
f

e a caracterı́stica

de Euler. Para tanto, utilizaremos o seguinte resultado, cuja demonstração pode ser

encontrada em [7].

Lema 2.33 Seja v(K) o número de vértices do complexo K e e(K) o número de arestas.

Então, v(K) ≤ 2e(K)
3

.

Teorema 2.34 Seja S uma superfı́cie e K um complexo arbitrário em S com e(K) arestas
e f (K) faces, então

2e(K)
f (K)

≤ 6
(
1− χ(S)

f (K)

)
.

Demonstração: Pelo Lema (2.33) temos que χ(S)− f (K) = v(K)− e(K) ≤ −e(K)
3

. Con-

sequentemente, 3(f (K) −χ(S)) ≥ e(K). Dividindo ambos os lados por f (K) temos o

resultado desejado. �

Teorema 2.35 Sejam S uma superfı́cie compacta e conexa, e N (S) o número mı́nimo de
cores necessárias para colorir todos os mapas em S. Então, N (T2) = 7 e N (P2) = 6.

Demonstração: Primeiramente, vamos mostrar que N (T2) ≤ 7 e N (P2) ≤ 6. De fato,

para o toro, pelo Teorema (2.34), temos que
2e(K)
f (K)

≤ 6. Consequentemente, pelo
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Lema (2.32), 7 cores são suficientes para colorir qualquer mapa no toro. Analoga-

mente para o plano projetivo, N (P2) ≥ 6
(
1− χ(S)

f (K)

)
. Então, 6 cores são suficientes. A

necessidade é pode ser observada na Figura (2.15).

Figura 2.15: Um mapa no toro com 7 cores e um mapa no plano projetivo com 6
cores.

Fonte: [7], p. 112.

Note que cada face é adjacente a outra face, e então esse mapa ilustra a necessidade.

Portanto, N (T2) = 7 e N (P2) = 6 como desejado.

�

2.8 A álgebra de cadeias

Definição 2.36 Um 2− complexo é direcionado se a cada aresta ou 1-célula é dada uma
orientação (do ponto inicial ao ponto final) e a cada polı́gono ou 2-célula é dada uma
orientação (horário ou anti-horário).

Note que a escolha de orientação para as arestas e polı́gonos é arbitrária, assim um

complexo pode ser orientado de diversas maneiras.

Definição 2.37 Seja K um complexo orientado. Uma k − cadeia C (inteira) em K é a
soma

C = a1σ1 + · · ·+ anσn,

onde σ1, . . . ,σn são k-células emK e a1, . . . , an ∈ Z. Além disso, definimos, 0σ = ∅ ∀σ ∈ K .

Exemplo 2.38 Considere o seguinte complexo orientado no toro dado na Figura (2.16).
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Figura 2.16: Complexo orientado no toro.

Alguns exemplos de cadeias para o complexo definido na Figura (2.16) são:

• As 0− cadeia 2P ,0P = ∅,−P ,P +Q,. . .

• As 1− cadeia 2a,−b,3c,2a− b+ 3c, . . .

• As 2− cadeia 2σ,τ − 3ρ,σ + τ + ρ, . . .

No que segue, vamos definir uma aritmética para as k − cadeias.

Definição 2.39 Sejam C e D duas k − cadeias em um complexo orientado K tais que

C = a1σ1 + · · ·+ anσn e D = b1σ1 + · · ·+ bnσn.

A soma C +D é definida por

C +D � (a1 + b1)σ1 + · · ·+ (an + bn)σn.

Teorema 2.40 Sejam C1, C2 e C3 k−cadeias em um complexo orientado K . Então valem

(1) C1 +C2 = C2 +C1;

(2) (C1 +C2) +C3 = C1 + (C2 +C3);

(3) C1 + ∅ = C1;

(4) C1 −C1 = ∅.

Demonstração: A demonstração segue para cada item,
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(1) Sejam C1 = a1σ1 + · · · + anσn, C2 = b1σ1 + · · · + bnσn e C3 = c1σ1 + · · · + cnσn. Por

definição temos que

C1 +C2 = (a1 + b1)σ1 + · · ·+ (an + bn)σn

= (b1 + a1)σ1 + · · ·+ (bn + an)σn

= C2 +C1.

(2) Sejam C1, C2 e C3 como em (1). Por definição temos que

(C1 +C2) +C3 = ((a1 + b1)σ1 + · · ·+ (an + bn)σn) + (c1σ1 + · · ·+ cnσn)

= ((a1 + b1) + c1)σ1 + · · ·+ ((an + bn) + cn)σn

= (a1 + (b1 + c1))σ1 + · · ·+ (an + (bn + cn))σn

= (a1σ1 + · · ·+ anσn) + ((b1 + c1)σ1 + · · ·+ (bn + cn)σn)

= C1 + (C2 +C3).

(3) Seja C1 como em (1). Note que por definição, ∅ = 0σ1 + · · ·+ 0σn. Consequente-

mente,

C1 + ∅ = (a1 + 0)σ1 + · · ·+ (an + 0)σn

= a1σ1 + · · ·+ anσn
= C1.

(4) Seja C1 como no em (1). Por definição temos que

C1 −C1 = (a1 − a1)σ1 + · · ·+ (an − an)σn

= 0σ1 + · · ·+ 0σn

= ∅.

�
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Definição 2.41 Seja K um complexo orientado. Vamos denotar o grupo de todas as
k − cadeias em K por Ck(K) � (Ck(K),+) para k = 1,2, . . . ,dim(K).

Note que Ck(K) é um grupo abeliano, segue diretamente do Teorema (2.40). Note

também que para complexos finitos, em particular toda superfı́cie do teorema de

classificação, os grupos Ck(K) serão finitamente gerados, e então, Ck(K) será um

grupo da forma Zn = Z⊕ · · · ⊕Z.

Definição 2.42 A fronteira de uma k-célula σ , denotada por ∂(σ ), é a (k − 1) − cadeia
com todas as (k-1)-células que são faces de σ , com direção herdada da orientação de σ .

A fronteira de uma 0-célula é definida com o conjunto vazio. Sendo P uma 0-

célula, então ∂(P ) = ∅. Estendendo por linearidade, podemos definir a fronteira de

uma cadeia.

Definição 2.43 Seja C uma k − cadeia, então C = a1σ1 + · · ·+ anσn. A fronteira de C é
definida por

∂(C) � a1∂(σ1) + · · ·+ an∂(σn).

O operador fronteira pega uma k − cadeia e nos da uma (k −1)− cadeia. Então, esse

operador pode ser definido como uma função

∂ : Ck(K)→ Ck−1(K) (2.1)

que definida desta maneira é um homomorfismo para qualquer complexo K .

A proposta de desenvolver tal operador é a de que ele nos de alguma informação

sobre a forma do complexo. Entretanto, note que, geometricamente, quando ∂(σ ) =

∅ não significa que a célula não tem fronteira, mas sim que as arestas de sua fronteira

se cancelam.

Definição 2.44 Se C é uma k − cadeia em um complexo orientado K e ∂(C) = ∅ então C
é um k − ciclo. O conjunto de todos os k − ciclos em K é denotado por Zk(K).

Note que Zk(K) ⊂ Ck(K) e o grupo (Zk(K),+) é um subgrupo de (Ck(K),+). Além

disso, Zk(K) é o núcleo do homomorfismo (2.1). As 1-células que formam loops

parecem ser importantes, visto que a presença desses loops em grafos determina a

caracterı́stica de Euler do mesmo. Assim, podemos definir as k − f ronteiras.
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Definição 2.45 Se C é um k − cadeia em um complexo orientado K tal que existe uma
(k + 1)− cadeia D com ∂(D) = C, então C é uma k − f ronteira. O conjuntos de todas as
k − f ronteiras em K é denotado por Bk(K).

Note que Bk(K) ⊂ Ck(K) e o grupo (Bk(K),+) é um subgrupo de (Ck(K),+). Além

disso, Bk(K) é a imagem do homomorfismo (2.1).

2.9 Complexos simpliciais

A partir de agora, vamos considerar os complexos simpliciais, os quais possuem

apenas células triangulares, os quais possuem algumas vantagens teóricas.

Por exemplo, um k − simplexo sempre tem k + 1 vértices, mas em um complexo

não simplicial nem sempre se verifica isso, um polı́gono pode ter um número qual-

quer de vértices. Então, o número de vértices nos dá imediatamente a dimensão

do simplexo. Além disso, a ordenação dos vértices nos dá uma orientação natu-

ral para o simplexo. Vamos denotar por < v0 > um vértice ou 0 − simplexo v0;

< v0,v1 > a aresta ou 1 − simplexo com orientação de v0 para v1; < v0,v1,v2 > é

o 2 − simplexo com vértices v0,v1 e v2 orientados nessa ordem. Um 3 − simplexo
< v0,v1,v2,v3 > é orientado por uma hélice orientada pela ordem dos vértices. Um

n − simplexo é denotado por < v0,v1, . . . , vn >. Mudando a ordem dos vértices mu-

damos a orientação do simplexo. As faces de um n − simplexo < v0,v1, . . . , vn > irão

ser todos os (n−1)− simplexos formados por esses vértices. Esses (n−1)− simplexos
irão ter n − 1 vértices escolhidos de v0,v1, . . . , vn, então podemos denotar um desses

(n − 1) − simplexos por < v0,v1, . . . ,vk , . . . , vn >, onde vk é o vértice omitido. Assim, a

fronteira de um n− simplexo é dada por

∂(< v0,v1, . . . , vn >) =
n∑
k=0

(−1)k < v0,v1, . . . ,vk , . . . , vn >

Essas regras podem simplificar a demonstração de alguns teoremas, especialmente

em dimensão maior que dois.

Lema 2.46 Se σ é um n− simplexo, então ∂ ◦∂(σ ) = ∂(∂(σ )) = ∅.

Demonstração: Seja σ um n− simplexo tal que

σ =< v0,v1, . . . , vn >
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Então,

∂ ◦∂(σ ) = ∂

 n∑
k=0

(−1)k < v0,v1, . . . ,vk , . . . , vn >


=

n∑
k=0

(−1)k∂(< v0,v1, . . . ,vk , . . . , vn >)

=
n∑
k=0

(−1)k
k−1∑
i=0

(−1)i < v0,v1, . . . ,vi , . . . ,vk , . . . , vn > +
n∑

i=k+1

(−1)i < v0,v1, . . . ,vk , . . . ,vi , . . . , vn >


=

∑
i<k≤n

(−1)k+i < v0,v1, . . . ,vi , . . . ,vk , . . . , vn > +
∑
i<k≤n

(−1)k+i−1 < v0,v1, . . . ,vk , . . . ,vi , . . . , vn >

=
∑
k,i

(
(−1)k+i + (−1)k+i−1

)
< v0,v1, . . . ,vk , . . . ,vi , . . . , vn >

=
∑
k,i

0 < v0,v1, . . . ,vk , . . . ,vi , . . . , vn >

= ∅

�

Teorema 2.47 A composição ∂◦∂ : Ck(K)→ Ck−2(K) satisfaz ∂◦∂(C) = ∅ para qualquer
k − cadeia em um complexo K .

Demonstração: Vamos assumir que o complexo está triangulado. Seja C = a1σ1 +

· · ·+anσn uma k − cadeia em K , onde ai ∈ Z ∀i ∈ {1,2, . . . ,n} e σi é um k − simplexo em

K ∀i ∈ {1,2, . . . ,n}. Portanto,

∂(C) = ∂(a1σ1 + · · ·+ anσn)

= a1∂(σ1) + · · ·+ an∂(σn)

Consequentemente,

∂(∂(C)) = ∂(a1∂(σ1) + · · ·+ an∂(σn))

= a1∂(∂(σ1)) + · · ·+ an∂(∂(σn))

Pelo Lema (2.46), como σi é um simplexo ∀i ∈ {1,2, . . . ,n}, temos que ∂(∂(σi)) = ∅
∀i ∈ {1,2, . . . ,n}. Logo,
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∂(∂(C)) = a1∂(∂(σ1)) + · · ·+ an∂(∂(σn))

= a1∅+ · · ·+ an∅

= ∅.

�

Observação 2.48 Como consequência direta do Teorema (2.47) temos que toda k−f ronteira
é um k − ciclo.

2.10 Grupos de homologia

Uma observação sobre os grupos Ck , Zk e Bk é que eles dependem muito do com-

plexo que estamos trabalhando e isso torna obscuro o entendimento do espaço. Bus-

camos uma maneira de obter somente os fatos essenciais sobre a forma do espaço.

Dois complexos diferentes sobre o toro podem dar dois grupos de cadeias total-

mente diferentes. Gostarı́amos de dizer que ambos os espaços tem a mesma forma.

Note que um 2− ciclo pode descrever uma cadeia cujas arestas são coletadas juntas

para formar uma cavidade vazia. Os 1− ciclos são arestas que formam loops. Uma

cadeia, na qual não existem ciclos, não pode-se ter uma cavidade ou loop. Assim, os

ciclos parecem ter uma importância especial no sentido de determinar a forma do

espaço. Por outro lado, alguns ciclos parecem ser redundantes.

Estamos tentando fazer algebricamente o que o teorema da classificação faz geome-

tricamente, ou seja, encontrar maneiras de filtrar informações não tão relevantes.

Definição 2.49 Dizemos que duas k − cadeias C1 e C2 são homólogas, escrevemos C1 ∼
C2, se C1 −C2 ∈ Bk(K), ou seja, se C1 −C2 = ∂(D) para alguma (k + 1)− cadeia D.

Teorema 2.50 Seja K um complexo, com C1,C2,C3 e C4 cadeias em Ck(K). Então, vale
que

(1) C1 ∼ C1;

(2) Se C1 ∼ C2, então C2 ∼ C1;

(3) Se C1 ∼ C2 e C2 ∼ C3, então C1 ∼ C3;

(4) Se C1 ∼ C2 e C3 ∼ C3, então C1 +C3 ∼ C2 +C4.
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Demonstração: A demonstração segue para cada item,

(1) Vamos mostrar que existe uma (k + 1) − cadeia D tal que ∂(D) = C1 − C1.

Note que, pelo Teorema (2.40), temos que C1 − C1 = ∅. Portanto, considere

∅ ∈ Ck+1(K). Assim, ∂(∅) = ∅, portanto, C1 −C1 = ∅ ∈ Bk(K).

(2) Suponha que C1 ∼ C2, vamos mostrar que existe uma (k + 1)− cadeia E tal que

∂(E) = C2 − C1. Note que, por hipótese, C1 ∼ C2, ou seja, existe D ∈ Ck+1(K)

tal que ∂(D) = C1 −C2. Considere E = −D, note que E ∈ Ck+1(K), além disso,

∂(E) = ∂(−D) = −(C1 −C2) = C2 −C1. Logo, C2 ∼ C1.

(3) Suponha que C1 ∼ C2 e C2 ∼ C3, vamos mostra que existe uma (k + 1)− cadeia
D tal que ∂(D) = C1−C3. De fato, exitem E,F ∈ Ck+1(K) tais que ∂(E) = C1−C2

e ∂(F) = C2 −C3. Considere D = E + F, assim, ∂(D) = ∂(E + F) = ∂(E) + ∂(F) =

(C1 −C2) + (C2 −C3) = C1 −C3. Logo, C1 ∼ C3.

(4) Suponha que C1 ∼ C2 e C3 ∼ C4, vamos mostra que existe uma (k + 1)− cadeia
D tal que ∂(D) = (C1 +C3) − (C2 +C4). De fato, exitem E,F ∈ Ck+1(K) tais que

∂(E) = C1 −C2 e ∂(F) = C3 −C4. Considere D = E + F, assim, ∂(D) = ∂(E + F) =

∂(E)+∂(F) = (C1−C2)+(C3−C4) = (C1 +C3)−(C2 +C4). Logo, C1 +C3 ∼ C2 +C4.

�

Note que as condições do Teorema (2.50) mostram que ∼ é uma relação de equi-

valência e, além disso, que ∼ funciona bem em conjunto com a adição de cadeias.

Definição 2.51 Seja K um complexo direcionado. O k-ésimo grupo de homologia de K é
definido pelo

Hk(K) � Zk(K)
/
Bk(K) ,

ou seja, o grupo das classes de equivalência dos elementos de Zk(K) com relação a homo-
logia. Em outras palavras, Hk(K) é Zk(K) com homologia usada como igualdade.

Os grupos de homologia combinam todas as informações essenciais que temos co-

letado, ou seja, quais células formam loops ou cavidades e, além disso, dispensa

informações repetidas. O processo para encontrarmos Hk(K) pode ser feito da se-

guinte maneira.

Cálculo de Hk(K) para um complexo orientado K :

Primeiramente, rotulemos e indiquemos uma orientação para todas as células do
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complexo. Façamos os cálculos para uma dimensão por vez, começando pela maior.

(1) Encontre Ck(K), o grupo de todas as k − cadeias;

(2) Para cada k − cadeia C geradora de (1), calcule ∂(C);

(3) Encontre Zk(K), usando os cálculos de (2);

(1) Note que se Zk(K) = {∅}, então Hk(K) = {∅};

(4) Encontre Bk(K);

(1) Quando estamos na dimensão mais alta, note que Bk(K) = {∅}, pois não

existem (k + 1)− cadeias para umas das k − cadeias serem fronteira;

(2) Caso não estivermos na dimensão mais alta, voltemos para (2), onde já

temos calculado quais k − cadeias são fronteiras de (k+1)-células;

(3) Note que se Bk(K) = {∅}, então Hk(K) = Zk(K);

(5) Calcule Hk(K), tomando Zk(K) e qualquer homologia Bk(K) encontrada.

Agora, vamos fazer um exemplo para ilustrar o processo descrito acima.

Exemplo 2.52 Vamos calcular os grupos de homologia para a garrafa de Klein (K2) com
um complexo dado como na Figura (2.17).

Figura 2.17: Complexo orientado na garrafa de Klein.

Vamos calcular H2(K2). Note que C2(K2) = {kσ : k ∈ Z} ' Z. Além disso, ∂(σ ) =

c + d − c + d = 2d, então σ não é um ciclo e Z2(K2) = {∅}. Por outro lado, B2(K2) = {∅},
pois não existem 3-células. Assim,
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H2(K2) = Z2(K2) ' 0.

Vamos calcular H1(K2). Note que C1(K2) = {kc + ld : k, l ∈ Z} ' Z ⊕ Z. Além disso,
∂(c) = ∂(d) = Q −Q = ∅, então Z1(K2) = {kc + ld : k, l ∈ Z} ' Z ⊕ Z. Por outro lado,
∂(σ ) = 2d, o grupo de homologia 2d ∼ 0. Assim,

H1(K2) = {kc+ ld : k, l ∈ Z e 2d = 0} ' Z⊕Z/
2 .

Vamos calcular H0(K2). Note que C0(K2) = {kQ : k ∈ Z} ' Z. Além disso, ∂(Q) = ∅,
então Q é um 0− ciclo e Z0(K2) = {kQ : k ∈ Z} ' Z. Por outro lado, ∂(c) = ∅ e ∂(d) = ∅,
então B0(K2) = {∅} ' 0. Assim,

H0(K2) = Z0(K2) ' Z.

Uma caracterı́stica adicional dos grupos de homologia, com relação a caracterı́stica

de Euler, é que H2(T2) = Z e H2(K2) = 0, ou seja, os grupos de homologia do toro

e da garrafa de Klein são distintos. Em cada dimensão, Hk(K) nos dá uma parte

da informação relativa as propriedades determinadas em cada dimensão. O grupo

H0(K) mede a conectividade do complexo K , se, por exemplo, H0(K) = Zn, então n é

o número de componentes conexas de K . O grupo H1(K) conta o número de loops

não triviais e H2(K) conta o números de buracos e cavidades em dimensão 2.

Teorema 2.53 Seja S uma superfı́cie compacta conexa e sem fronteira. Se S é orientável,
então H2(K) ' Z. Se S não é orientável, então H2(S) ' 0.

Demonstração: Considere uma triangulação da superfı́cie S. Sejam σ e τ dois 2 −
simplexos adjacentes com aresta em comum a. Se eles tem a mesma orientação,

então a aresta a é cancelada na soma σ+τ . Entretanto, se eles tem orientação oposta,

então ±2a está na fronteira de σ+τ . Note que os 2−simplexos emK não tem a mesma

orientação se, e somente se, |K | contém uma faixa de Möbius. Assim, se todos os

2 − simplexos de K podem ser orientados, então eles tem a mesma orientação, logo

K será um complexo em uma superfı́cie orientável, ou uma esfera ou a soma conexa

de toros. Considere a 2− cadeia C soma de todos os 2− simplexos em K . Como cada

aresta em K é fronteira de exatamente dois triângulos os triângulos tem orientação

compatı́vel, temos que ∂(C) = ∅ e C é um ciclo. Como não existem 3-células, o

segundo grupo de homologia é

H2(S) = {kC : k ∈ Z} ' Z.
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Por outro lado, se K contém uma faixa de Möbius, então K é um complexo em uma

superfı́cie não orientável, a qual é a soma conexa de planos projetivos. Seja C um

2 − ciclo em K . Se σ é um simplexo em C, então todos os triângulos adjacentes a σ

estão em C desde que ∂(C) = ∅, e então existe uma célula γ tal que γ + σ = ∅ . Logo,

C contém todas as 2-células de K , mas algumas não possuem orientação compatı́vel,

algumas arestas não se cancelam. Assim, C não é um ciclo, portanto

H2(S) = {∅} ' 0.

�

A Tabela (2.3) nos fornece os grupos de homologia de algumas superfı́cies.

Variedade H2 H1 H0
S2 Z 0 Z
T2 Z Z⊕Z Z
K2 0 Z⊕Z/

2 Z
P2 0 Z/

2 Z
S1 0 Z Z

Cilindro 0 Z Z
Faixa de Möbius 0 Z Z

Disco 0 0 Z

Tabela 2.3: Grupos de homologia de algumas superfı́cies.

Note que para diferentes superfı́cies, por exemplo, S1 e o Cilindro, podemos ter os

mesmos grupos de homologia.

Novos complexos podem ser construı́dos com um grupo de homologia desejado,

contando que eles sejam combinações dos grupos apresentados na Tabela (2.3),

usando os seguintes teoremas.

Teorema 2.54 Sejam K e L complexos simpliciais conexos com K∩L = ∅. Seja X = K∪L.
Então, para k = 0,1,2, . . .

Hk(X) =Hk(K)⊕Hk(L)

O espaço X = K ∪L formado é chamado de união disjunta de K e L.

Teorema 2.55 Sejam K e L complexos simpliciais conexos com K ∩ L = {P }, para algum
vértice P . Seja X = K ∪L. Então, X é um complexo simplicial e
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Hk(X) =Hk(K)⊕Hk(L), se k > 0

Hk(X) = Z, se k = 0.

O espaço X formado é chamado de produto wedge ou união de um ponto e é de-

notado por X = K ∨ L. O espaço K ∨ L é formado pela junção de K e L em um único

ponto.

2.11 Números de Betti e a caracterı́stica de Euler

Existe uma relação entre a caracterı́stica de Euler e os grupos de cadeia, já que

Ck(K) é gerado pelas k-células. Denotaremos por rk(Ck(K)), é o número de k-células

de K . Assim, para um n− complexo, temos

χ(K) = rk(C0(K))− rk(C1(K)) + · · ·+ (−1)nrk(Cn(K))

Porém, existe uma relação mais sutil entre os grupos de homologia e a caracterı́stica

de Euler; para explorar isso vamos considerar as seguintes proposições sobre grupos.

Proposição 2.56 Seja G um grupo abeliano com um subgrupo H finitamente gerado.
Então

rk
(
G /
H

)
= rk(G)− rk(H),

onde rk(G) � #(elementos da base).

Proposição 2.57 Seja f : G1→ G2 um homomorfismo entre os grupos G1 e G2. Então,

rk(ker(f )) + rk(Im(f )) = rk(G1)

No que segue, denotaremos o k-ésimo homomorfismo de fronteira sobre os grupos

de cadeia de um complexo K por

∂k : Ck(K)→ Ck−1(K).

Note que Zk(K) = ker(∂k) e Bk(K) = Im(∂k+1). Sejam
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ck = rk(Ck(K))

zk = rk(Zk(K))

bk = rk(Bk(K))

Pela Proposição (2.57), para k = 1,2, . . ., temos

ck = zk + bk−1 (2.2)

Definição 2.58 O número de Betti de um complexo K é dado por

βk = rk(Hk(K))

Assim, pela Definição (2.51) e pela Proposição (2.56), temos que

βk = zk − bk . (2.3)

Agora vamos apresentar o teorema que relaciona a caracterı́stica de Euler e os

números de Betti.

Teorema 2.59 Seja K um n− complexo. Então

χ(K) = β0 − β1 + · · ·+ (−1)nβn

Demonstração: Usando (2.2) e (2.3), temos que

β0 − β1 + · · ·+ (−1)nβn = (z0 − b0)− (z1 − b1) + · · ·+ (−1)n(zn − bn)

= z0 − (b0 + z1) + (b1 + z2) + · · ·+ (−1)n−1(bn−1 + zn) + (1)nbn

= z0 − c1 + c2 + · · ·+ (−1)n−1cn + (−1)nbn

Entretanto, para qualquer 0 − cadeia C, ∂(C) = ∅, logo Z0(K) = C0(K) e, então,

z0 = c0. Além disso, o grupo Bn(K) = ∅, pois nenhuma n − cadeia em K , exceto ∅,
pode ser fronteira, pois não existem (n+1)-células. Eentão bn = 0. Portanto,

β0 − β1 + · · ·+ (−1)nβn = c0 − c1 + c2 + · · ·+ (−1)n−1cn = χ(K)
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Os números de Betti são invariantes topológicos que contém uma grande quan-

tidade de informações. Eles podem ser combinados como no Teorema (2.59) para

formar a caracterı́stica de Euler. Além disso, pelo Teorema (2.59), note que se S é

uma superfı́cie orientada, β2 = 1, e se S é não orientada, então β2 = 0. Então β2

determina a orientabilidade da variedade. O número de componentes conexas no

espaço é dada por β0.

2.12 Invariância da homologia para superfı́cies

Gostarı́amos de mostrar que os grupos de homologia de um complexo K depende

somente do espaço subjacente |K | e não da particular escolha do complexo.

A prova da invariância dos grupos de homologia para superfı́cies é muito seme-

lhante a prova do Teorema (2.25) da invariância da caracterı́stica de Euler. Vamos

assumir que K é um 2−simplexo representando uma superfı́cie, então K é composto

de polı́gonos identificados ao longo de suas arestas e vértices. Qualquer polı́gono

pode ser subdividido em triângulos, e esses triângulos podem ser divididos nova-

mente em um processo de subdivisão baricêntrica para formar uma triangulação

da superfı́cie. Vamos nomear esse complexo simplicial por K ′, assim |K | = |K ′ |. Pe-

los Teoremas (2.16) e (2.18) sobre classificação de superfı́cies com e sem fronteira

qualquer triangulação de uma superfı́cie pode ser reduzido a um diagrama plano

na forma padrão. Assim, para mostrar que os grupos de homologia não dependem

do complexo K , deve-se mostrar que as transformações que levam K para K ′ não

afetam os grupos de homologia.

Os teoremas sobre invariância serão apresentados a seguir.

Teorema 2.60 Seja K um complexo e K (1) a subdivisão baricêntrica de K . Então,

H•(K) 'H•(K (1)).

Teorema 2.61 Seja S um complexo dado pelo diagrama planar na foram padrão de uma
superfı́cie. Se K é um 2− complexo tal que |K | é homeomorfo a S, então

H•(K) 'H•(S).

Corolário 2.62 Se K e K ′ são 2 − complexos tais que |K | = |K ′ | = S para alguma su-
perfı́cie S, então
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H•(K) 'H•(K ′).

O Teorema (2.61) e o Corolário (2.62) implicam que os grupos de homologia depen-

dem, pelo menos para superfı́cies, somente do espaço subjacente e não do particular

complexo usado para representar o espaço. Então, dois 2 − complexos de uma su-

perfı́cie nos dão os mesmos grupos de homologia, então faz sentido escolher o mais

simples.

O argumento chave do Corolário (2.62) é que K e K ′ são subdivisões de um mesmo

diagrama planar. Podemos utilizar essa mesma ideia para obter o seguinte corolário.

Corolário 2.63 Se K e K ′ são complexos com |K | = |K ′ |, e K e K ′ tem uma subdivisão
comum K ′′, então

Hk(K) 'Hk(K ′).

No Corolário (2.63), o complexo K pode ser subdividido por uma sequência finita

de subdivisões elementares para obtermos um complexo K ′′, e, então, K ′′ pode ser

“desmontado” utilizando as inversas das transformações elementares para obtermos

K ′. Então, a existência de uma subdivisão comum forma uma conexão entre ambos

os complexos.

Para arbitrários 2−complexos (não somente superfı́cies), pode-se provar a invariância

dos grupos de homologia usando o Corolário (2.63) e a versão bidimensional da fa-

mosa conjectura topológica apresentada a seguir.

Conjectura 2.64 Quaisquer duas triangulações de um espaço topológico tem uma sub-
divisão comum.

A Conjectura (2.64) foi provada para todos 2 − complexos trianguláveis em 1963

por Papakyriakopoulos.
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