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REsuMO

Introducao, objetivos e metodologia

Este projeto faz uma introducdo a topologia algébrica com abordagem introdutdria
e intuitiva, utilizando o apelo geométrico. Para isso, vamos nos restringir ao es-
tudo das superficies, que podem ser facilmente visualizadas, dando-nos intuicao
geométrica e reduzindo a natureza abstrata da topologia algébrica a um nivel acessivel
a um aluno de graduacdo. A principal bibliografia utilizada seré [5] e [7]. Também
usaremos [[11], [2]], [3]], [4], [6], [8] e [9] como bibliografia complementar. Além de
aplicagoes interessantes, este é um dos Unicos assuntos que permitem que um es-
tudante ainda na graduacao veja as trés grandes dreas da matemadtica - geometria,
analise e algebra - trabalhando juntas em harmonia para resolver importantes pro-

blemas, como o Teorema da curva de Jordan e o Teorema das quatro cores.

O objetivo deste projeto é a apresentacdo dos grupos de homologia. Existem varias
formas diferentes de se definir os grupos de homologia. Estudaremos os grupos de
homologia simplicial, que foram os primeiros historicamente e sdo conceitualmente

mais simples e concretos, além de mais faceis de se calcular.
A metodologia a ser empregada é a usual na drea de Matemadtica: estudo indivi-

dual (leitura e resolucdo de exercicios), discussdes semanais com a orientadora e

apresentacdes de semindrios periodicamente sobre o contetido estudado.

Palavras Chaves: Topologia algébrica, curva de Jordan, quatro cores



1.1 Conceitos Basicos

Nesta secdo, introduziremos os conceitos de célula, complexos e outros conceitos

no plano.

Definicdo 1.1 Usando coordenadas cartesianas no plano podemos associar um ponto P
a um par de ntimeros P = (x,y). Dados dois pontos P = (x,y) e Q = (z,w) definimos a
soma como

PeQ=(x+zy+w)

o produto de um ponto P por um escalar A como

AOP=(Ax,Ay)

IP|| = \/x2 +p2.

Observacao 1.2 A norma de um ponto é a distdncia euclidiana do ponto a origem.

e a norma de um ponto P como

Usando a norma podemos expressar a distdncia entre dois pontos P e Q como ||P — Q).

Definicao 1.3 Seja P um ponto e A um subconjunto do plano. Uma vizinhanga de P é
qualquer disco circular (sem a fronteira) que contém P. Dizemos que P esta proximo ao

conjunto A se toda vizinhanga de P contiver pelo menos um ponto de A.

Se P estd proximo de A escrevemos P «<— A. Agora, podemos definir transformagoes

continuas como transformacdes que preservam relagdes de vizinhancas.

Defini¢ao 1.4 Uma transformagdo continua de um subconjunto D do plano em outro
subconjunto R é uma fungdo f com dominio D e imagem R de modo que para cada ponto
P € D e conjunto A C D, se P esta proximo de A, entdo f(P) esta proximo de f[A] =

{f(Q):QeA}
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Defini¢ao 1.5 A transformagdo identidade 1d é a transformagdo 1d(P) = P. Uma transformagdo
u : D — R é chamada de invertivel se existe uma transformagio v : R — D tal que

vou =Id. A transformagdo v é chamada de uma inversa para u.

Definicdo 1.6 Uma transformacdo topologica no plano é uma transformagio continua
que tem uma transformagdo inversa continua. Dois subconjuntos do plano sdo chamados

topologicamente equivalentes se existir uma transformagio topologica entre eles.

Defini¢ao 1.7 Uma célula é qualquer figura topologicamente equivalente a um disco fe-
chado. Como ilustra a Figura (1.1).

Qe

Figura 1.1: Exemplos de células

Observacao 1.8 Subconjuntos do plano sio ditos topologicamente equivalentes quando
qualquer uma delas pode ser continuamente transformada em outra, ou seja, transformagoes

que ndo envolvem "rasgar”ou "cortar”.

Defini¢ao 1.9 Propriedade topoldgica é definida como uma propriedade de um subcon-

junto do plano que é invariante sobre a uma transformagdo continua.

Defini¢ao 1.10 Um complexo é qualquer subconjunto do plano composto de mais de
uma célula, de modo que, um complexo é construido a partir da colagem dos lados de

duas células.

Defini¢do 1.11 Defina poligono como uma célula na qual um finito ntimero de pontos
em sua fronteira sao escolhidos como vértices. As secoes na fronteira entre dois vértices

serdo chamados de lados.

Chamaremos de n-gono um poligono que possui n lados.

Definicao 1.12 Um poliedro é um complexo que é topologicamente equivalente a uma

esfera.
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Defini¢ao 1.13 Uma curva é qualquer subconjunto do plano topologicamente equiva-
lente a um segmento de reta L = {(x,v) : v = 0 e 0 < x < 1} e uma curva fechada (ou
curva de Jordan) é qualquer subconjunto do plano topologicamente equivalente a um

circulo.

Definicao 1.14 Sejam P = {P,, P,,...} uma sequéncia de pontos no plano e P um ponto
qualquer. O ponto P estd proximo da sequéncia P se P = P, para um niimero infinito de
termos da sequéncia ou P = P, para um niimero finito de termos da sequéncia e P estd

proximo do conjunto de pontos formado pelos termos da sequéncia.

Observacao 1.15 Proximidade a sequéncias pode ser usada para caracterizar fungoes

continuas da mesma maneira que proximidade a conjuntos.

Teorema 1.16 Dados D e R subconjuntos do plano, uma fungio f : D — R é continua
se, e somente se, para qualquer ponto P proximo a sequéncia P = {P,} em D teremos que

f(P) esta proximo da sequéncia f(IP) em R.

Demonstragdo: ( = ) Seja f : D — R uma transformacgdo continua, entdo por
defini¢do temos que dado um ponto P € D e um conjunto A C D segue que se P < A,
entdo f(P) « f[A]. Considere A o conjunto dos pontos da sequéncia P e a prova se-
gue.

(=) Sejam f : D — R uma fungdo, P um ponto tal que P € D e A um conjunto
formado pelos pontos de P. Segue, por hipétese, que se P « A, entdo f(P) < f[A].

Donde segue que f é continua. O

Defini¢ao 1.17 Um conjunto S do plano é compacto se toda sequéncia em S tem um

ponto proximo de S.

Definicao 1.18 Um conjunto élimitado se ele esti contido em um retangulo R = {(x,v), my <
x < ny e my <y < Ny}, para quaisquer my, my, ny,ny € R e um conjunto é fechado se ele

contém todos os seus pontos proximos.
Compacidade é uma propriedade topoldgica (cf. [9]).
Teorema 1.19 (Bolzano-Weierstrass) Células sdo compactas.

Demonstragdo: Seja D um disco. Segue que o intervalo [0,1] é compacto (cf. [9]).
Disto segue que o quadrado é compacto, pois o produto de compactos é compactos.
Como o quadrado é topologicamente equivalente ao disco, temos que o disco é com-
pacto. Como células sdo subconjuntosdo plano topologicamente equivalentes a um

disco, temos que células sao compactas. O
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Corolario 1.20 Um subconjunto do plano S é compacto se, e somente se, S é fechado e

limitado.

Demonstragdao: ( = ) Suponha que S ndo é limitado, entdo S ndo esta contido
num retdngulo. Em particular, para cada retdngulo R, centrado na origem existe
um ponto P, em S, mas fora de R,. Entdo a sequéncia P = {P,} ndo tem ponto
préximo em S. Portanto, S ndo é compacto. Suponha que S ndo é fechado, entao,
por definicdo, existe um ponto préoximo a S que ndo esta em S. Portanto, S nao é
compacto.

(&) Seja S um conjunto fechado e limitado. Como S ¢é limitado e fechado, ele
esta contido em um retdngulo R, note que R é uma célula e, pelo teorema anterior,
compacto. Note também, que podemos transformar topologicamente o retdingulo R
no conjunto S e, como compacidade é uma propriedade topoldgica, temos que S é

compacto. OJ

Definicao 1.21 Um subconjunto do plano S é conexo se sempre que S for dividido em
dois subconjuntos disjuntos nido-vazios A e B, um desses conjuntos sempre contém um

ponto proximo ao outro.

Observacao 1.22 Conexidade é uma propriedade topoldgica. Seja X um espago topoldgico.
Efa’wil ver que X é desconexo se, e somente se, existem U,V C X abertos nio vazios e dis-

juntos tais que X = U U V.

Observacao 1.23 Vamos mostrar que R é conexo. Por absurdo, suponha que R seja
desconexo. Existem U,V C R abertos, ndo vazios, disjuntos tais que R = U U V. Tome
acUebeV. Suponha, sem perda de generalidade, que a < b. Considere S = {x € [a,b]:
[a,x] C U}. Temos que S # 0, pois a € S. Além disso, S é limitado superiormente (por b,
por exemplo). Portanto, existe s = sup S.

Note que s ¢ V, pois se s € V, existiria € > 0 tal que |s—€,s+ €[C V, pois V é aberto em
R. Como s =sups§, temos que s — € nio é cota superior de S. Logo, existe x € S tal que
s—e <x<s. Logo, xe UNV. Contudo, isto ndo ocorre, pois UNV = 0. Portanto, s ¢ V.
ComoR=UUYV seV, temos que s € U. Usando o fato que U é aberto em R, tomamos
0> 0tal que |s—06,s+0[C U es+o<b. Tomey €S tal que s—0 <y <s. Tomemos que
[a,s + g] =[a,y]U [y,s + %] Cc U. Portanto, s+ % € S. Absurdo, pois s é cota superior de

S. Logo, R é conexo.

Teorema 1.24 Curvas sdo conexas.
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Demonstragdo: Seja C = {(x,y) : y = 0e 0 < x < 1} um segmento de reta. Segue
da Observacao (1.23) que o intervalo C é conexo. Como conexidade é uma pro-
priedade topolédgica, qualquer subconjunto do plano topologicamente equivalente
ao segmento C é conexo. Como, por defini¢do, curvas sao subconjuntos do plano

topologicamente equivalentes ao segmento C, temos que curvas sao conexas. U

Definicdo 1.25 Um espago topoldgico é um conjunto t junto com uma classe N de sub-

conjuntos de T de modo que:

(a) Cada ponto P de t estda em algum elemento de N. Os elementos de N que contém P

sdo chamados vizinhangas de P.
(b) Toda intersec¢do de duas vizinhangas de um ponto P contém uma vizinhanga.

Vamos agora generalizar os conceitos de proximidade e conjuntos fechados para

espacos topologicos.

Defini¢ao 1.26 Sejam T um espago topoldégico, A um subconjunto de t e P um ponto de
T. P esta proximo de A, escrevemos P « A, se toda vizinhanga de P contém um ponto de
distinto de P. P esta proximo da sequéncia {P,} se P = P, para infinitos valores de n ou P

esta proximo de um conjunto de infinitos pontos dessa sequéncia.

Defini¢ao 1.27 Seja T um espaco topoldgico e A um subconjunto de t. A é fechado se A
contém todos os pontos proximos a ele. A é aberto se todo ponto em A ndo estd ndo estd
proximo a T\ A. Compacto se toda sequéncia de A tem um ponto proximo em A e conexo
se sempre que A é separado em duas partes disjuntas ndo-vazias, entdo uma dessas partes
contém um ponto préximo a outra parte. Associado a cada conjunto A existe o interior de
A que consiste de todos os ponto de A que ndo estdo em Tt \ A e nem préximos de T\ A, o
fecho de A consiste dos pontos de A junto com os pontos proximos a A e a fronteira de A

consiste nos pontos proximosa Aea t\ A.

Defini¢ao 1.28 Sejam t e k espagos topoldgicos. A transformagdo f : T — k é continua

de para cada ponto P de T e subconjunto A de t tais que P < A, entdo f(P) « f[A].

Uma transformacdo topoldgica é uma transformacdo continua, invertivel e que
tem inversa continua. Dois espagos topoldgicos sdao topologicamente equivalentes

se existe uma transformacdo topoldgica entre eles.
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1.2 Campos Vetoriais

Defini¢ao 1.29 Um campo vetorial V em um subconjunto D do plano é uma fungio que
associa a cada P € D um vetor no plano com a origem em P. Assim, se P = (x,y) entdo

V(P) pode ser descrito da seguinte maneira
V(P) = (E(x,9),G(x,9)),

onde F e G sdo fungoes a valores reais de P.

Um campo vetorial V(P) é continuo quando as fungdes F e G forem continuas de

acordo com o que foi definido em (|1.29).

Observacao 1.30 Dado V um campo vetorial em D, podemos definir uma fungio da

seguinte maneira
f(P)=P+V(P)=(x+F(x,)y+G(xy))

Defini¢ao 1.31 Seja f : D — D uma transformagdo continua sobre uma regido D do
plano. Se f(P) = P, para algum P € D, dizemos que P é um ponto fixo de f e que f
possui a propriedade do ponto fixo. Se toda transformagio continua f : D — D tiver a

propriedade do ponto fixo, entdo dizemos que D tem a propriedade do ponto fixo.

A propriedade do ponto fixo é uma propriedade topoldgica (cf. [9]).

Defini¢ao 1.32 Uma triangulagio de um tridngulo D (ou qualquer outro poligono) é
uma divisdo de D em um niimero finito de triangulos de modo que cada aresta da fronteira
de D é a aresta de somente um tridngulo da divisdo e cada aresta no interior de D é o lado

de exatamente dois tridngulos da divisdo. Como ilustra a Figura (1.2).

Figura 1.2: Exemplos de Triangulagoes
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Dados um tridngulo D e uma triangulacao de D, descreveremos uma forma de

rotular os vértices dessa triangulacgdo.

Defini¢ao 1.33 Sejam D um tridngulo e considere em D uma triangula¢do. Uma rotula-
gem de Sperner é uma atribuigdo de rétulos aos vértices dos tridngulos dessa triangulagdo.
Primeiramente, os vértices de D serdo rotulados com rotulos diferentes. Posteriormente,
os vértices dos triangulos da triangulagcdo que pertencem aos lados da fronteira de D serdo
rotulados somente com os rotulos iguais aos das extremidades do lado ao que pertencem.
Por tiltimo, os vértices no interior de D serdo rotulados de qualquer maneira, entretanto

s0 podem ser usados os rotulos utilizados nos vértices de D. Como ilustra a Figura (1.3).

Figura 1.3: Exemplos de Rotulagem de Sperner

Defini¢ao 1.34 Um tridngulo (segmento) cujos vértices possuem rotulos diferentes sio

chamados de triangulos (segmentos) completos. Como ilustra a Figura (1.4).

Figura 1.4: Exemplos de Tridngulo Completo (em azul)

O Lema a seguir garante a existéncia de tridngulos completos.

Lema 1.35 Seja D um tridngulo no plano e T uma triangulagido de D. Temos que para

uma rotulagem de Sperner da triangulacdo T existe pelo menos um tridngulo completo.

Demonstragdo: Provaremos que o numero de tridngulos completos é impar. Con-

sidere, inicialmente, o problema andlogo em uma dimensdo. Um segmentos de reta

10
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com rétulos A e B, dividido em um numero finito de segmentos, cujos vértices sdo
rotulados somente com A’s e B’s. N6s devemos provar que o nimeros de segmentos
completos, que denotaremos por b, é um numero impar. Seja a o nimero de seg-
mentos com dois rotulos A. Assim, o namero 2.a+b é o dobro do namero de vértices
com o rétulo A. Seja ¢ o numero de vértices com rétulo A no interior do segmento.
Entao

2a+b=2c+1

Consequentemente
b=2(c-a)+1

Portanto, o nimero de segmentos completos b é impar. Retornando para o problema
em duas dimensdes, queremos mostrar que o numero de tridngulos completos b é
impar. Seja a o numero de tridngulos cujos vértices sdo rotulados com ABA ou BAB.
Assim, o numero 2.a+b é o dobro do namero de lados com vértices cujos rétulos sdo
A e B. Seja c o numero de lados cujos vértices sao rotulados com A e B no interior
do tridngulo original e 4 o nimero de segmentos na fronteira do tridngulo original

cujos vértices sao rotulados com A e B. Entdo
2a+b=2.c+d

Consequentemente
b=2.(c—a)+d

Como provamos na primeira parte que o numero de segmentos completos 4 é impar,

segue que o numero de tridngulos completos b é impar. U

Defini¢ao 1.36 Considere um sistema de equagdes diferenciais

d_)tc =F(x,v)
d_}; =G(x,p)
determinado por um campo vetorial continuo V(x,v) = (F(x,v), G(x,)) em alguma regido

D do plano. O conjunto de solugdes desse sistema formam uma familia de curvas direcio-

nadas no plano, chamadas curvas integrais do sistema.

As curvas integrais de um sistema de equagdes diferenciais tém tangentes em cada
ponto P. A figura formada por essas curvas sao chamadas de retratos de fase do

sistema de equagoes diferenciais. Existe um conjunto de pontos chamados de pontos

11
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criticos, onde V(P) = 0 e ao redor deles as curvas integrais se reinem.

Teorema 1.37 (Teorema do ponto fixo de Brouwer) Células tém a propriedade do

ponto fixo.

Demonstragdo: Seja D uma célula no plano. Como uma célula a propriedade do
ponto fixo é uma propriedade topoldgica se provarmos que um tridngulo possui
a propriedade do ponto fixo, provaremos que células possuem a propriedade do
ponto fixo. Seja f : D — D uma transformacao continua e V um campo de vetores
correspondente a f, ou seja,

f(P)=P+V(P)

Se encontrarmos um ponto P tal que V(P) = 0, esse ponto possui a propriedade do
ponto fixo, pois
f(P)=P+V(P)=P+0="P

Sem perda de generalidade, considere um tridngulo D que tem um vértice no eixo

leste, outro no eixo oeste e outro no eixo norte. Como ilustra Figura (1.5).

Norte

QOeste Leste

Sul

Figura 1.5: Localizagao dos pontos nos eixos

Para esta demonstragdo, consideraremos uma divisdo do plano em trés regides:

nordeste, noroeste e sul, como ilustra a Figura (1.6).

12
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Noroeste Nordeste

Sul

Figura 1.6: As trés dire¢oes do plano

Para o tridngulo D, rotule cada vértice de acordo com a dire¢do do vetor desse
respectivo vértice. Existem trés situagdes, nas quais um vetor aponta para duas
direcdes: os vetores que apontam para leste, oeste e norte no sentido usual. Para
pontos que tem o vetor apontando para norte e leste, defina a dire¢cdo como nor-
deste e para pontos que tém o vetor apontando para o oeste, defina a direcao como
noroeste. Note que, o tinico ponto que aponta para todas as dire¢des é o vetor nulo.
O vértice no eixo oeste, que tem o seu vetor apontando para o nordeste, serd rotu-
lado como P;; o vetor no eixo leste; que tem o vetor apontando para o noroeste, sera
rotulado com Q;; e o vértice no eixo norte, que tem o vetor apontando para o sul,
defina o rétulo R;. Seja a triangulagdo T; sobre o tridngulo D. Rotule os vértices
P, Q; e Ry por A, B e C, respectivamente. Posteriormente, considere uma rotu-
lagem de Sperner sobre os tridngulos de T; de modo que os pontos A tenham seu
respectivo vetor apontando para o nordeste, os pontos B tenham seu respectivo ve-
tor apontando para o noroeste e os pontos C tenham seu respectivo vetor apontando
para o sul. Pelo Lema segue que existe pelo menos um tridngulo completo.
Sem perda de generalidade, seja D; um tridngulo completo de T;. Renomeie os seus
vértices A, B e C para P,, Q, e R,. Posteriormente, aplique uma triangulacdo T,
sobre D, e repita o processo de rotulagem. Repita esse processo e note que os lados
dos tridngulos completos tendem a zero. Por constru¢do, D contém uma sequéncia
de tridngulos completos e as sequéncias P = {P,}, Q = {Q,} e R = {R,,} de vértices
que tém seus vetores apontando somente para o nordeste, noroeste e sul, respec-
tivamente. Pela compacidade de D existe um ponto P € D tal que P — P. Como
os lados dos tridngulos ficam arbitrariamente pequenos a sequéncia P fica arbitra-
riamente proxima de Q e R, segue dai que Q > P e R — P. Como V é um campo

vetorial continuo e P — P, temos que V(P) — V(P), assim como os vetores V(Q)

13
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e V(R). Como P é uma sequéncia de pontos cujos V(IP) estao na direcdo nordeste
e V(P) — P, temos que P é um ponto cujo V(P) aponta para o nordeste também.
Analogamente, para Q e R concluimos que P é um ponto cujo V(P) aponta para no-
roeste e sul, respectivamente. Assim, como o vetor nulo é o tnico que esta nas trés
direcdes, entao V(P) = 0. O

Lema 1.38 Seja D qualquer conjunto compacto juntamente com um campo vetorial V.
Se V ésempre diferente de zero em D, entdo existe uma constante € > 0 de modo que todo

triangulo completo com vértices em D tem o comprimento de um lado maior que €.

Demonstragdo: Contra-positiva do Teorema (|1.37). U

Sejam uma célula na forma de um poligono com qualquer namero de lados e uma
triangulacdo para essa célula tal que todos os vértices possuam somente rétulos A, B
e C. Considere C o numero de tridngulos completos contado com orientagdo, ou seja,
cada tridngulo completo contribui com +1 se os rétulos ABC sdo dispostos nessa or-
dem no sentido anti-hordrio ao redor do tridngulo, mas cada tridngulo completo
contribui com -1 se os rétulos ABC sao dispostos nessa ordem no sentido hordrio ao
longo do tridngulo. Considere também 7 o nimero de segmentos completos (com
rétulos AB) na fronteira do poligono contados com orientagdo, ou seja, cada seg-
mento completo contribui com +1 se os rétulos AB sdo dispostos nessa ordem no
sentido anti-hordrio ao redor do poligono, mas cada segmento completo contribui

com —1 se os rétulos AB sdao dispostos nessa ordem no sentido horério ao longo do
poligono. Como ilustram a Figura (1.7)) e a Figura (1.8).

Figura 1.7: Ilustracao do nimero C Figura 1.8: Ilustracao do numero 7

14
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Teorema 1.39 C =71

Demonstragdo: Seja S o numero de arestas com rétulo AB na fronteira do poligono
e nos tridngulos da triangulacdo do mesmo, contados da seguinte maneira: cada
tridngulo é considerado a parte dos demais e seus lados AB sdo contados como +1
de acordo com a orientagdo do tridngulo a que ele pertence. Note que um tridngulo
completo contribui com +1 para C dependendo de sua orientagao e a0 mesmo tempo
contribui com +1 para S dependendo da orientagdo, como a orientagdo é a mesma
para ambos, a contribuicdo e igual para ambos. Note também, que um tridngulo
do tipo ABA contribui com 0 para S, pois possui um lado com orientacgdo positiva
e outro com orientagdo negativa e também contribui 0 para C, pois ABA ndo é um
triangulo completo. Analogamente, obtemos o mesmo resultado para os tridngulos
ABB. Portanto, C = S. Por outro lado, considere um lado com rétulo AB. Se esse lado
estiver no interior do poligono ele pertence a dois tridngulos que contribuem com
+1 e —1 para §, considerando todos os segmentos com rétulos AB no interior, temos
que eles contribuem 0 para §. Portanto, os tnicos segmentos que contribuem para
S sdo 0s mesmos que contribuem para 7 e como 0s segmentos possuem a mesma

orientacdo, temos que S = 7. Consequentemente, C =S =7. O

Defini¢ao 1.40 Considere um campo vetorial continuo V em uma curva fechada y tal
que V ndo se anula em y. Seja Q um ponto fixado em y, e suponha que o ponto P percorra
a curva y, partindo de Q no sentido anti-horario. Ao retornar ao ponto Q o vetor V(P)
fara um determinado nitmero de revolugdes que serdo contadas da seguinte maneira: +1
se a revolugdo for no sentido anti-hordrio e —1 se a revolugdo for no sentido horario. O
resultado algébrico dessa contagem é chamado de winding number de V sobre y e é
denotado por W(y). Como ilustra a Figura (1.9).
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Figura 1.9: Ilustragdo do winding number

Observacao 1.41 Uma forma alternativa para calcular o winding number de V sobre y
(ao invés de contar o nitmero de revolugoes de V(P)) é escolher uma direcdo aleatoria e
selecionar os pontos P de y tais que V(P) tenha a diregdo escolhida. Entdo, contaremos
da seguinte maneira: +1 se V(P) passar na direcdo escolhida no sentido anti-horario, —1
se V(P) passar na diregdo escolhida no sentido anti-horario e 0 se V(P) ndo completar

uma revolugio completa.

Observagdo 1.42 Seja {P}_, um conjunto finito de pontos de y. Como {P;} divide y
em um niimero finito de lados, chamaremos {P;} de parti¢do de y. Rotule os pontos da
parti¢do de y de acordo com a diregdo dos vetores V (P;) considerando a divisdo do plano
em trés regides: sul (C), noroeste (B) e nordeste (A). Agora, se os pontos {P,} tiverem sido
escolhidos suficientemente proximos uns dos outros, quando o vetor V(P) passar ao longo
da diregdo norte no sentido anti-horario um lado com rotulo AB ira aparecer e quando o
vetor V(P) passar ao longo da diregdo norte no sentido horario um lado com rétulo BA

ird aparecer. Assim, o winding number coincide com o indice Z.

Defini¢do 1.43 Dizemos que a divisdo {P;}}_, de y é e—densa se qualquer ponto inserido
entre dois pontos da divisdo estiver a uma distancia menor do que € dos pontos de cada
lado.

Teorema 1.44 Tome um campo vetorial continuo V definido sobre uma curva fechada
y e suponha que V(P) = 0,YP € y. Para quaisquer divisoes P = {P;} e R = {R;} de y,

sejam I(PP) e Z(R) os indices do IP e R rotulados de acordo com a dire¢do dos vetores V
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nos vertices de P e R. Entdo, existe uma constante € > 0 de modo que se P e R sdo duas
divisoes € — densas de y, entdo I(P)=1(R).

Demonstragdo: Podemos aplicar o Lema a curva y, pois curvas fechadas sdo
compactas. Entdo existe uma constante € > 0 tal que todo tridngulo completo com
vértices em y tem lado maior que €. Sejam P = {P;} e R = {R;} duas divisdes e—densas
de y. Note que ao adicionarmos um ponto a qualquer divisdo € — densa nao altera o
seu indice Z. Portanto, seja S = P JR. Consequentemente, temos que Z(P) =Z(S) e
Z(R) =Z(S). Logo, Z(P) =Z(R). O

Dada uma curva fechada y e um campo vetorial continuo V tal que V(P) = 0,VP €
¥, o winding number de V em 7y é unico para qualquer rotulagem do poligono

obtido para qualquer divisao € —densade y, onde € é a constante do Teorema (|1.44).

Teorema 1.45 Seja D uma célula com uma curva fechada y bordo. Se um campo vetorial

continuo V nunca é zero em D, entdo W(y) = 0.

Demonstragdo: Aplique o Lema em . Como V nunca é zero em D, existe
um € > 0 tal que todo tridngulo completo com vértices em D tem lados maiores que
€. Escolha uma divisdo de y € —densa. Por defini¢do, o indice dessa divisao é o
winding number de V em y. Unindo essa divisdo com a triangulagdo de D, pelo
Teorema C = I. Note que, podemos adicionar pontos a triangulacdo de D
de tal modo que a distdncia entre dois vértices seja sempre menor que €. Portanto

C = 0. Consequentemente, W(y) = 0. O

Teorema 1.46 Sejam V um campo vetorial continuo, D uma célula e y sua fronteira.

Suponha que V ndo é zero em y, entdo
W(V) =Z(P)+--+Z(P,),

onde Py,..., P, sdo pontos criticos de V em D.

Demonstragdo: Considere Pj,..., P, pontos criticos de V em D. Ao redor de cada
P;, construa um circulo y; que contenha somente um ponto critico, nesse caso P,.
Construa, agora, curvas entre y; e ¥, dividindo D em Dy células e, entdo , aplique o
Teorema (1.45). Consequentemente

W) =W+ + Wy
=Z(P)+---+Z(P,).
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1.3 Homologia plana e o teorema da curva de Jordan

Defini¢ao 1.47 Uma cadeia poligonal é um subconjunto do plano formado por uma
sequéncia finita de segmentos de retas paralelos aos eixos coordenados, sendo que cada

segmento compartilha os pontos finais com os outros segmentos da sequéncia. Como ilus-
tra Figura (1.10).

cadeia poligonais tém dois pontos finais. Dados dois pontos P e Q, se existe uma

cadeia com pontos finais P e Q, dizemos que P e Q sdao conectados por uma cadeia.

Figura 1.10: Exemplo de cadeia

Defini¢ao 1.48 Dizemos que um espago topologico X é conexo por caminhos se para

quaisquer x,y € X existe uma cadeia poligonal ligando tais pontos.

Proposicao 1.49 Um espago topoldgico X é conexo por caminhos se, e somente se, para

quaisquer x,y € X existe uma f : [0,1] — X continua tal que f(0)=xe f(1)=1.

Teorema 1.50 Seja G um conjunto aberto. Entdo G é conexo se, e somente se, G é conexo

por caminhos.

Demonstragdo: (= ) Suponha, por absurdo, que existem dois pontos P,Q € G que
ndo podem ser conectados por um caminho. Considere V o conjunto dos pontos que

podem se conectar a P por um caminho e considere, também, G\ V. Note que
e V#0,poisPeV;

* G\V=0,poisQeG\V;
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« G=VU(G\V).

Vamos mostrar que V e G\ V sdo abertos. E dai chegamos a um absurdo, pois G é
conexo por hipétese.

» V é aberto:
De fato, seja P’ € V, entdo P’ € G e como, por hipdtese, G é aberto, existe uma
vizinhanca aberta Vp, de P’ tal que P” pode ser conectado a P’ por uma po-
ligonal 91, mas como P’ pode ser conectado a P por uma poligonal y,, pois
P’ € V. Entdo, P” pode ser conectado a P por uma poligonal yy U ;. Con-
sequentemente, P € V. Como P” é arbitrario seque que Vpr C V, logo V é

aberto.

e G\V éaberto:
De fato, seja Q" € G\ V, entdo Q' € G, e como G é aberto por hipdtese, existe
uma vizinhanga aberta V de Q’ tal que Q" € V5y C G. Considere agora
Q” € Vi, note que Q” pode ser conectado a Q" por uma poligonal y;. Su-
ponha, por absurdo, que Q” possa se conectar a P por uma poligonal y, entao
Q’ pode se conectar a P pela poligonal yyU y;. Absurdo, pois Q"€ G\ V. Con-
sequentemente, Q” € G\ V. Como Q" é arbitrdrio, segue que Vi C G\ V, logo
G\ V é aberto.

(&) Suponha, por absurdo, que G ndo é conexo. Entao existem U,V C G abertos
nao vazios, disjuntos tais que G=U U V. Tome x € U e y € V. Como G é conexo
por caminhos, existe f : [0,1] — G continua tal que f(0) =x e f(1) =y. Como f é
continua, f![U] e f~![V] sdo abertos em [0,1]. Temos que f~![U]=0e f[V]=0.
Além disso, fH{U]N f1[V] =0, pois UNV = 0. Por fim, f-{U]JU f~}[V]=[0,1].
Disto segue que [0, 1] é desconexo. Absurdo, pela Observagao (1.23]). O

Defini¢ao 1.51 Uma grade G é uma porgao retangular do plano com lados paralelos aos
eixos coordenados e com um nitmero finito de segmentos de reta adicionadas ao longo do

retangulo paralelas aos lados.

As intersecc¢oes de segmentos de reta dentro de uma grade sdo chamadas vértices.
Os segmentos de reta dentro de uma grade entre dois vértices sao chamados arestas.

As regides dentro de uma grade entre um conjunto de arestas sao chamadas faces.

Observagao 1.52 Como triangulagdes, grades sdo um tipo de complexos.
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A terminologia adotada acima sdo boas para um contato intuitivo com o estudo de
grades, entretanto adotaremos uma terminologia que simplificard o estudo geral da

homologia.

Defini¢ao 1.53 Chamaremos os vértices de 0 —simplexo, as arestas de 1 —simplexo e as
faces de 2—simplexo. A unido de simplexo é chamada de cadeia. Chamaremos a unido de
0-simplexo de 0—cadeia, a unido de 1 —simplexo de 1 —cadeia e a unido de 2—simplexo

de 2 —cadeia.

Observacao 1.54 Uma cadeia deve ser de um desses tipos e, aléem disso, ndo existem

cadeia mistas.

Vamos introduzir uma algebra de cadeia que serd util para conta-las posterior-

mente.

Definicao 1.55 Sejam C{‘ e C'2< duas k — cadeia, onde k = 0,1,2. Podemos definir uma
operagdo @ entre duas k — cadeia, mesmo k, como uma nova k — cadeia constituida dos

k —simplexo em C{‘ ou C’z‘, mas nao em ambos, como ilustra a Figura (m)

ci Cy CteCy

0 — chains

1 — chains

2 — chains

Figura 1.11: Exemplos da soma de k —cadeia
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Proposicao 1.56 A operagio @ serd chamada de soma, se C{‘ e C'2‘ sdo duas k — cadeia,
temos que C{‘@CIZ‘ éuma k—cadeia, onde k = 0,1,2. Além disso, as seguintes propriedades

sdo validas:
a) Comutatividade: C{‘ @ C’:,f = C]2< &) Ck, para todas as k — cadeia C{‘ e C’g.

b) Associatividade: C{‘ EB(C’2‘ <) C§) = (C{‘ &) C’Z‘) @ Ck, para todas as k — cadeia ck, CIZ‘
e Clz‘.

¢) Elemento Neutro: Existe um finico elemento neutro O tal que C{‘ @0k = C{‘, para
toda k — cadeia CF.

d) Inversa: Existe um iinico elemento inverso para cada k—cadeia tal que C{‘EBC’ZC = Q.

Note que, cada grade G determina trés grupos chamados de grupos de cadeias de G.

Introduziremos agora o operador bordo, d, como um operador que conecta a dlgebra

de uma k — cadeia com a 4dlgebra de uma (k — 1) — cadeia em uma grade.

Definigdo 1.57 Seja C* uma k — cadeia. Defina dC* como a (k —1) - cadeia de todos os

(k—1)—simplexo que estdo contidos em um nivmero impar de k —simplexo de C*, como
ilustra a Figura (1.12).

Figura 1.12: Exemplos do operador bordo

Observagao 1.58 Note que o operador bordo so esta definido para 1—cadeia e 2—cadeia.
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Proposic¢ao 1.59 Sejam C’f e C’2‘ k —cadeia com k = 1,2. Entdo vale a propriedade da

aditividade para o operador bordo, ou seja,
d(cfech)=0(ct)ea(ch)

Demonstragdo: Seja S um (k—1)—-simplex. Seja ny e n, os numeros de k—simplexo em
C{‘ e C’2‘, respectivamente, que contém S. Entdo S C B(Ci‘) sen; éimpare S C Q(CIZ‘)
se n, é impar. Se n; e n, sdo ambos impares ou ambos pares, entdo S ndo estd em
8(C{<) ® 8(C'2‘). Esse é o caso em que 1y + n, é par. Por outro lado, se somente
um de n; e n, for par e o outro impar, entdo S C Q(Ci‘) ® a(c’g) e ny + n, é impar.
Consequentemente, S estar ou ndo contido em Q(Ci‘) 7] Q(Cé‘) depende somente se
ni+n, é impar ou par. Retornando para C{‘EBCIZ‘, seja n o numero de k—simplexo que
contém S e que estao contidos em C{‘ e CIZC. Esses sdo os simplexo que se cancelam e,
portanto, ndo estdo em C{‘@CIZ‘. Segue que 1y +n,—2.né onumero de k—simplexo de
CféBCé‘ que contém S. Assim sendo, S C Q(Ci‘ @ C’g) depende somente se n; +1n,—-2.n
é impar ou par. Como (1 + n,) e (n; + n, — 2.n) sdo ambos pares ou ambos impares
que S esta contido em ambos a(cf GBCIZ‘) e 8(Ci‘)69 Q(Clz‘), ou ndo esta contido em

nenhum deles. O

Defini¢io 1.60 Seja C* uma k — cadeia. Se existe uma (k + 1) — cadeia T**! tal que
ck= 8(Tk+1), entdo chamamos C* de k — bordo.

Note que os k — bordo s6 estdo definidos para k = 0,1. Por convencgdo, para k = 2

dizemos que somente () é uma 2 — bordo.

Definigio 1.61 Seja C* uma k—cadeia. Se B(Ck) = 0, entdo chamamos C* de k —ciclo.

Note que o k—ciclo s6 estd definido para k = 1, 2. Por convencao, dizemos que todas

as 0 —cadeia sdao 0 —ciclos.

Defini¢ao 1.62 Seja G uma grade. Duas k — cadeia C{‘ e C'Z‘ sdo ditas homologas, escre-
vemos Ci‘ ~ C;f, se C{‘ <) C]?f for uma k —bordo.

Proposicdo 1.63 Note que as seguintes propriedades sdo validas:
(a) Reflexiva: Ck ~ Ck para toda k — cadeia.
(b) Simétrica: Se C{‘ ~ C]2‘, entdo C'z‘ ~ C{‘.

(¢) Transitiva: Se C{‘ ~ CIZ‘ e C’2‘ ~ C’S‘, entdo C{‘ ~ Cé‘.
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(d) Aditiva: Se C{‘ ~ CIZ‘ e C’3‘ ~ Cf,f, entio (C{‘ @C]g) ~ (CIZCGBC{;).

Lema 1.64 Todo 1 —ciclo é a fronteira de exatamente duas 2 — cadeias complementares

no plano.

Demonstragdo: Seja A um 1 —ciclo. Vamos provar, por indugdo sobre o ntiimero de
arestas de G, que existem ao menos duas 2 — cadeia com fronteira .

Note que, uma grade com quatro arestas consiste num retdngulo vazio. Entdo exis-
tem somente dois 1 —ciclo, 0 e o préprio retangulo. O 1 —ciclo 0 é fronteira para as
2 —cadeia () e todo o plano, enquanto o retdngulo com interior vazio é a fronteira do
retangulo com interior cheio e da regido do lado de fora do retangulo. Isso prova a
condigdo inicial.

Assuma que vale o lema para uma grade G dada e considere A uma 1—ciclo na grade
G obtida por adicionarmos uma nova linha / em G.

Assuma, s. p. g., que a linha / é horizontal. Considere K uma 2 — cadeia das regioes
de G* nas quais os lados inferiores estdo em A e sobre I. Entdo JK ird conter os lados
de A em .

Seja p = A®JK, entdo I ndo é uma aresta de p. Além disso, note que, y é uma 1—ciclo,
pois du=9dA+d(dK)=0®0=0.

Por hipétese de indugdo, u é a fronteira de pelo menos duas 2 —cadeia S; e S,. Seja
T, =S1®KeT,=S5,®K. Entdo, dT; = dS; ®JK = u® JK = A e, analogamente,
dT, = A. Portanto, T; e T, sdo duas 2 — cadeia com fronteira A que sdo distintas, pois
S1 e S, sado distintas.

Vamos provar que A pode ser fronteira de, no maximo, duas 2 — cadeia. Seja T} uma
2 —cadeia qualquer com fronteira A e seja T, uma 2 — cadeia com fronteira A cons-
truida na primeira parte da prova. Temos que d(T}1 ®T,) = JdT; ®JT, =A@ A = 0.
Entdo Ty & T, é um 2 —ciclo.

Note que os tnicos 2 — ciclo sdo () e o plano todo. Assim sendo, ou T} ® T, = 0 ou
T, ® T, é o plano todo. No primeiro caso, T} = T,, enquanto no segundo caso, T; é
o complementar de T,. Portanto existem, no maximo, duas 2 — cadeia com fronteira
A O

Definicao 1.65 Sejam G um subconjunto do plano e G uma grade em G. Duas k—cadeia

em G, Ci‘ e C'Z‘, sdo chamadas de homdlogas em G, donotado por
Ck~CK(em G)

se Ci‘ @ C’z‘ é uma fronteira de uma (k + 1) — cadeia em G que esti contida em G.
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Corolario 1.66 Sejam F um conjunto conexo e fechado e G o seu conjunto complementar
aberto. Seja G uma grade. Entdo todo 1—ciclo A em G é a fronteira de uma cadeia (em G).
Em outras palavras, se o conjunto aberto G tem apenas um buraco, entdo todo 1 —ciclo é

bordo de uma 2 — cadeia (em G).

Demonstragdo: Pelo Lema (1.64), A é a fronteira de duas complementares 2 —cadeia
T, e T,. Vamos mostrar que uma dessas 2 — cadeia esta contida em G. Suponha, por
absurdo, que T; e T, intersectam F. Entdo os conjuntos ndo-vazios FNT; e FN T,
formam uma particao de F. Logo, todo ponto de F deve pertencer a um desses
conjuntos ja que T; U T, cobre todo o plano. Como F é conexo, por defini¢do, um
desses conjuntos contém um ponto préximo ao outro. Consequentemente, F contém
um ponto da fronteira entre T e T,. Como a fronteira entre T} e T, é A, temos que F
contém um ponto de 1. Absurdo, pois, por hipétese, A C G. Portanto, G contém ou

T, ou T,, e A é a fronteira de uma 2 — cadeia (em G). OJ

Corolario 1.67 Sejam F um conjunto fechado com duas componentes conexas e G o seu

conjunto complementar aberto. Seja G uma grade. Entdo
(a) G deve conter um 1 —ciclo que ndo é fronteiras (em G).
(b) quaisquer dois 1 —ciclos em G sdo homdlogos (em G).
Demonstracao:

(a) Seja F a unido de duas componentes conexas F; e F,. Considere um 1 —ciclo A
em G, pelo Lema (1.64) existem duas 2 —cadeia T; e T, de modo que F; C T} e
F, Cc T,. Como T; e T, intersectam F, entdo A ndo é bordo de nenhuma cadeia

contida em G. Portanto, G contém um 1 —ciclo que ndo tem fronteiras em G.

Como ilustra Figura (1.13).
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F

Figura 1.13: Exemplo de A

(b) Sejam A e pdois 1—ciclo em G que ndo sdo fronteiras de 2—cadeia (em G). Pelo
Lema , A é fronteira de duas 2 —cadeia T; e T,. Pelo mesmo argumento
do Corolério , as componentes F; e F, estdo inteiramente contidas em T;
ou T,. Do fato de A ndo ser fronteira de uma 2 — cadeia (em G), segue que F;
e F, ndo podem ambas pertencer ao mesmo conjunto T; e T,. Assim sendo,
podemos supor s. p. g., que F; C T} e F, C T,. Analogamente, y é a fronteira
de duas 2 —cadeia complementares S; e S, e, novamente, podemos supor s. p.
g., que F; ¢ S; e F, € S,. Considere a cadeia T; @ S;. Claramente T} & S; é
disjunta de F,, pois T} e S; sdo disjuntas de F,. Mas, T; @ S; é disjunto de Fy,
pois cada 2 —cadeia de F; em G esta contida em F; e S;. Assim sendo, T; @ S;
é uma 2 —cadeia (em G). Mas d(T; ®S;) = A ® u e, portanto, quaisquer dois

1 —ciclo em G sdao homologos (em G).

0

Teorema 1.68 Sejam G um conjunto aberto do plano, G uma grade em G, e sejam P e
Q dois pontos de G que sdo vérticies de G. Entdo P ~ Q (em G) se, e somente se, P e Q

podem ser conectados por uma cadeia poligonal em G.

Demonstragdo: ( = ) Por hipétese P ~ Q (em G), ou seja, existe uma 1 — cadeia
C; € G tal que Q(Cll) = P® Q. Note que, C{ é uma cadeia poligonal totalmente
contida em G tal que P e Q sdo suas extremidades. Logo, P e Q podem ser conectados
por uma cadeia poligonal em G.

(&) Por hipétese P e Q podem ser conectados por uma cadeia poligonal y C G.
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Note que ¥ é um 1 — cadeia, além disso, d(y) = P & Q. Portanto, por definicdo,
P~ Q (emG). O

Lema 1.69 Sejam E; e E, dois conjuntos compactos disjuntos. Entdo existe uma cons-

tante € > 0 tal que se R é um ponto de Ey e S um ponto de E,, entdo
IR—-S]||>e.

Demonstragao: Suponha, por absurdo, que para cada € > 0 existe um par de pontos
ReE; e S €E, tais que ||R-S|| <€, entdo, em particular, podemos achar sequéncias
de pontos {R,} C E; e {S,} C E, tais que ||R, - S,|| < % Segue da compacidade que
um dos conjuntos E; ou E, contém um ponto préximo ao outro. Do fato de E; e E,
serem fechados, esse ponto pertence a ambos os conjuntos. Absurdo, pois E; e E;

sao disjuntos por hipotese. O

Lema 1.70 Sejam Gy e G, dois conjuntos abertos com conjuntos complementares com-
pactos Fy e F,, respectivamente. Sejam G uma grade, P e Q dois pontos que sdo vértices
de G tais que
P~Q (em Gy) P ~Q (em Gy)
Sejam Ay e Ay 1 —cadeia em Gy e Gy, respectivamente, tais que d(A1) = d(1,) = P @ Q.
Gcontéem Ay e Ay e
A1~ Ay (em G UG,)

entdo em uma subdivisio adequada G* de G temos
P~ Q (em G1 N GZ)

Demonstragdo: Por hipdtese A @ A, é a fronteira de uma 2 — cadeia T em G; U
G,. Entdo os conjuntos compactos T N F; e T N F, sdo disjuntos. Pelo Lema
existe uma constante € > 0 de modo que os pontos desses conjuntos sempre estdo
separados por uma distancia de pelo menos €. Assim sendo, podemos subdividir
a grade G em uma grade G* tal que alguma 2 — cadeia de G* ndo intersecte nem
T NFy nem T NF,. Conseguimos tudo isso adicionando um numero suficiente de
linhas de modo que as arestas das 2 — cadeia da nova grade sejam menores que 5.
Posteriormente, nos substituimos Ay, A, e T por suas subdivisdes em G*. Seja S a
2 —cadeia em G* das faces de T que intersectam F,. Por construgdo, S é disjunto de
Fi.Sejal =21 ®d(S). Como d(A) =d(A)®I(d(S)) =P dQ, entdo A conecta P e Q.

Vamos provar que A é disjunta de F; e F,. Observe primeiro que 1; e S sao disjuntos
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de F;, consequentemente, A é disjunto de F;. Além disso, note que T & S é disjunto
de F,, pois as faces de T que intersectam F, estdo em S e, portanto, se cancelam na

soma. Assim,
dS®T)=0d(S)®d(T)=d(S)dA DA, = A A,

Consequentemente, A = d(S @ T)® A,. Portanto, A é disjunto de F,, pois S® T e A,
sdo disjuntos de F,.
Disto e do Teorema (1.68) segue que P ~ Q (em G; N G,). O

Teorema 1.71 Caminhos ndo dividem o plano.

Demonstragdo: Sejam y um caminho e P e Q dois pontos que ndo pertencem a
y. Suponha, por absurdo, que P e Q ndo podem ser conectados por um caminho
contido em um conjunto aberto G, onde G é o complementar de y. Seja T uma
transformacao topoldgica do intervalo [0, 1] em y. Sejam y; e ¥, duas “metades” de
¥ que correspondem pela T aos intervalos [0, %] e [%, 1]. Vamos provar que uma des-
sas “metades”, y; ou y,, também separam P e Q. Suponha, por absurdo, que nem
Y1, hem y,, separam P e Q. Entdo, existem caminhos poligonais A e A, conectando
P a Q sem intersectar y; e y,, respectivamente. Note que podemos considerar 1; e
Ay como 1 —cadeia em uma grade adequada. Sejam G; e G, os complementares de
Y1 € ¥y, respectivamente. Entdo, A; C G, A, C G, e d(Ay) =d(A;) = P® Q. Como
G1 U G, € o plano todo a menos do ponto de intersec¢ao de y; e y,, segue do Co-
rolério que A; ~ A, (em G; UG,). Entdo pelo Lema P~ Q (em G; NG,).
Absurdo, pois contradiz a hipdtese de que y separa P e Q, entao concluimos que um
dos caminhos, y; ou y,, separa P e Q.

Voltando ao problema inicial, podemos continuar dividindo o intervalo [0,1] em
“metades” e concluiremos que essas novas “metades” também dividem P de Q. Mas,
note que, essas divisdes criam uma sequéncia de subintervalos de [0, 1] que conver-
gem para um ponto S em y. Entdo, os pontos P e Q sdo separados por pequenos
intervalos de y contidos em qualquer vizinhanga aberta de S. Absurdo!

Portanto, y ndo separa P e Q. O

Teorema 1.72 (Teorema da curva de Jordan) Seja J uma curva de Jordan (qualquer
caminho fechado). Entdo, J' ndo é conexo, mas consiste de duas componentes conexas
disjuntas, uma das quais é limitada (chamada de interior) e a outra ndo é limitada (cha-

mada de exterior). A curva de Jordan J forma uma fronteira para ambos os lados.

Demonstragdo: Sejam P, Q e R trés pontos em J’. Suponha que todo caminho co-

nectando P e Q intersecta 7/, ou seja, P e Q estdo em componentes conexas distintas
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de J’. Analogamente, suponha que Q e R também estejam em componentes conexas
distintas de J’. Vamos provar que existe um caminho entre P e R que ndo intersecta
J’, ou seja, P e R estdo na mesma componente conexa de J'. Sejam A e B dois pon-
tos em J. Note que A e B determinam dois caminhos y; e y,, cuja unido é J e cuja
intersecgdo é o conjunto com os pontos A e B. Pelo Teorema nem 7y nem ),
sozinhas dividem o plano. Assim sendo, existe uma grade G e 1 —cadeias Ay, A, py e
Uy tais que d(Ay) =d () =P@®Qe d(py)=d(u) = Q@®R, py e A ndo intersectam
Y1 € Uy e A, ndo intersectam y,. Sejam G; e G, conjuntos abertos complementares a

Y1 € Y2, respectivamente, como ilustra a Figura (1.14)

P A

A/'A\ L

1

Ny

T \/ |

2 R

G

Figura 1.14: Grade G

O 1—ciclo A{ ® A, ndo pode ser uma fronteira em Gy U G,, pois pelo Lema (1.70) P
e Q poderiam ser conectados em G NG, o que contraria a hipdtese. Analogamente,

M1 @ pp ndo podem ser uma fronteira em G; U G,. Como G; U G, é o complemento
do par de pontos {A, B}, segue do Corolario (1.67) que

28



1 Parte 1

(A1 @A) ~ (11 ® pp) (em G UGy)

Em outras palavras, 11 ®A,®u; ®y, € uma fronteira em G; UG,. Aplicando o Lema
para as duas cadeias (A @ pq) e (A, ® pp) temos que cada uma delas conecta
P a Rem G e Gy, respectivamente. Assim sendo, A; ® A, ® p; ® y, é uma fronteira
em Gy U G,. Portanto, concluimos que P e R podem ser conectados em Gy NG, = J.
Consequentemente, P e R estdao na mesma componente conexa de [J’. Portanto, J
divide o plano em no maximo duas componentes conexas.

Agora, vamos exibir dois pontos tais que todo caminho entre eles intersecta J. Se-
jam A e B dois pontos quaisquer em 7. Note que A e B determinam dois caminhos
Y1 € V,, cuja interseccdo é o conjunto com os ponto A e B. Seja 0 uma grade ao
redor de A que ndo contenha B. Os caminhos y; e y, intersectam um ponto den-
tro de o e o outro fora de o, logo pelo Lema , eles intersectam o. Como o e
J se intersectam, vamos mostrar que ¢ contém pontos de “ambos os lados” de 7,
pontos esses que nao podem ser conectados por um caminho que ndo intersecta J.
Seja G uma grade na qual 0 é uma 1 - cadeia e de tal modo que nenhum lado de o
intersecte ambos os conjuntos y; e ;. Seja A a 1 —cadeia que consiste dos lados de
0 que intersectam y,. Por construgdo, A é ndo vazio. Ao mesmo tempo A ndo pode
ser toda a grade o, pois ¢ intersecta y;. Entdo, d(1) # @ mas consiste de um ntimero
par de vértices. Organize esses vértices em pares P, Qq; P, Qy;...; P, Q,,. Note que
nenhum desses vértices esta em J, pois qualquer vértice de 0 em J estard em dois
lados de A. Afirmamos que pelo menos um desses pares é separado por J. De fato,
suponha, por absurdo, cada um desses pares de pontos pode ser conectados por um
caminho que ndo intersecte J. Entdo, em uma subdivisdao adequada G* esses cami-
nhos poligonais serdo todos 1 — cadeias, digamos uy, yy,..., p,, onde d(py) =P, ® Qq,
du) =P, ®Q,, ..., dp,) =P, ®Q,. Seja pp=p; ®---® y,, entdo d(u) = J(1). Conse-
quentemente, A@®u é um 1 —ciclo. Sejam G; e G, conjuntos abertos complementares
a y1 e y,, respectivamente. Como y e A ndo intersectam 7y, temos que y® A é um
1 —ciclo em Gy. Pelo Corolario (1.66), A @ y é uma fronteira em G;. A 1 - cadeia
p®A®o éum 1 —ciclo. Por construgdo, A ® o ndo intersectam y, pois os lados de o
que intersectam 7y, sdo cancelados na soma. Assim sendo, y® A @® o é uma fronteira

em G,. Segue de que

oc=AepeLleudo)

¢ uma fronteira em G; U G,. Mas G; U G, é o plano todo menos os pontos A e B.
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Absurdo, pois a grade o foi escolhida de modo a ndo ser uma fronteira em Gy U G,.
Portanto, J divide o plano em pelo menos duas componentes conexas.

Temos entdo que J divide o plano em duas componentes R; e R,. Como J é fe-
chada, temos que R; e R, sdo abetos e, consequentemente, ndo contem suas frontei-
ras. Assim sendo, as fronteiras de R; e R,, denotadas respectivamente por b(R;) e
b(R;), sdo tais que b(R;) C R, UJ e b(R,;) C Ry UJ. Mas, pontos de R; nao podem
estar proximos de R, (e vice-versa), pois eles sdo abertos. Assim sendo, b(R;) e b(R,)
sdo subconjuntos de J. Note que um ponto arbitrario A de J estd proximo de R; e
R,. Entdo J é uma fronteira para ambas as partes.

Como J é limitado, estd contido em um disco. Entao exatamente uma dessas regides
R ou R, vai conter o conjunto conexo dos pontos fora desse disco e, portanto, serd
ilimitado. A outra regido determinada por J serd limitada. Portanto, uma das

regides serd limitada e a outra ilimitada. O
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2.1 Complexos

Defini¢ao 2.1 Uma n-célula é um conjunto cujo interior é homeomorfo a um disco n —
dimensional D" = {x € R" : ||x|| < 1} com a propriedade adicional que sua fronteira deve
ser dividida em um ntimero finito de células de dimensdo menor, chamadas de faces da

n-célula. Escrevemos o < T se ¢ é uma face de t.

Uma 0-célula é um ponto ou vértice A;

Uma 1-célula é um segmento de reta a = AB tal que A <a, B<a;

Uma 2-célula é um poligono 0 = ABC, em particular um tridngulo, tal que AB, AC,BC <
o. Note que, A <AB < 0, portanto A < o;

Uma 3-célula é um poliedro solido tal que poligonos, arestas e vértices sdo faces.

Note que as faces de uma n-célula sdo células de menor dimensdo. A fronteira
de uma 1-célula ou aresta sdo 0-células ou vértices, a fronteira de uma 2-célula ou
poligono sdo 1-células ou arestas e 0-células ou vértices; essas células vao se juntar
para formarem complexos.

Células sao “coladas” juntas para formarem complexos, colando aresta a aresta e

vértice a vértice e identificando células de dimensao maior de uma maneira similar.
Defini¢ao 2.2 Um complexo K é um conjunto finito de células,
K = U{a :0 é uma célula}
tal que:
1. Se o é uma célula em K, entdo todas as faces de o sdo elementos de K;

2. Se o e T sdo células em K, entdo int(o) Nint(t) = 0.

Um complexo de dimensdo k é chamado de k — complexo.
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Defini¢ao 2.3 Seja K um complexo. O conjunto de todos os pontos nas células de K é
K| ={x:x €0 €K, onde o é uma célula de K}

0 qual chamaremos de espago de realizagdo de K.

A diferenga entre um espaco e um complexo é que K é um conjunto de células e
|K| é um conjunto de pontos. Complexos sdo uma espécie de camadas estruturadas,

construidas de células de diversas dimensdes.

Definicao 2.4 Seja K um complexo. O k —esqueleto de K é

Ky = {k —células de K}

n
Note que Ky é um k —complexo e K = UKk’ onde n = dim(K).

k=1
Uma estrutura topolédgica deve ser definida para complexos, definindo vizinhancas

para todos os pontos em |K|. Se K é um complexo, entdo cada célula em K é ho-
meomorfa a uma bola n — dimensional em R". Construiremos um novo espago to-
polégico a partir da unido de células usando a topologia de identifica¢do, definida

para 2 —complexos a seguir.

Definicdo 2.5 2 — complexos possuem trés tipos de pontos: pontos no interior de um
dos poligonos, pontos no interior de uma das arestas e pontos vértices. Vamos definir
vizinhangas para cada tipo de ponto separadamente. Em geral, comegamos com um con-

junto de poligonos P = {P,}.

* Pontos no interior dos poligonos: Se um ponto x esta no interior de um poligono
P, entdo defina a vizinhanga de x como sendo qualquer disco totalmente contido no

interior de P;;

* Pontos no interior das arestas: Se um ponto y estda em uma aresta b a qual nio faz
parte de uma fronteira de qualquer poligono, entdo defina a vizinhanga de y como
qualquer intervalo aberto contido no interior de b. Se y é um ponto numa aresta a,
onde a é composta por uma colegdo de arestas ay,ay,...,a, de poligonos {P;}{, entdo
podemos assumir que essa colagem foi feita de forma a respeitar a diregio escolhida
nas arestas. Primeiramente, encontramos os pontos que juntos formam o ponto y.
Note que cada aresta é topologicamente equivalente ao intervalo unitario I =[0,1]
e, entdo, existem homeomorfismos da aresta a para o intervalo I e de I para cada

aresta a;, escolhendo de maneira aos pontos iniciais das arestas irem a 0 e os pontos
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finais a 1. Seja f; : a — a; a composi¢do de homeomorfismos, para i = 1,2,...,n.
Entdo o ponto y corresponde aos pontos y; = fi(v), i = 1,2,...,n. Cada ponto y;
esta na aresta a; em algum poligono P; e tem uma vizinhanga de meio-disco nesse
poligono. Esses meio-discos podem ser escolhidos de forma a ndo sobreporem uns
aos outros, ndo incluirem nenhum vértice e terem o mesmo raio. Quando as arestas
ay,ay,...,a, sio coladas para formar a aresta a, os meio-disco também sdo colados
ao longo do seu didmetro e criam uma vizinhanga para cada ponto nas arestas do
complexo K.

* Pontos de vértice: Seja B um vértice no complexo K, formado pela identificagdo
dos vértices By,B,,..., B, de um conjunto de poligonos e arestas. Cada vértice B;
esta ou em um desses poligonos ou em uma aresta, a qual ndo faz parte de nenhum
desses poligonos. Se B; esta em um poligono, escolha a topologia relativa de B; no
poligono e note que isso serd visto como o setor de um disco. Esses setores circulares
devem ser escolhidos de maneira a ndo sobreporem uns aos outros, ndo intersectarem
outros vértices e terem o mesmo raio. Se B; estd em uma aresta, entdo a topologia
relativa de B; é um semi-intervalo com B; no final. Apés construirmos o complexo
K, esses setores e intervalos semi-abertos sdo colados para formar a vizinhanga de
B.

Note que as vizinhangas de pontos nos complexos, nesta topologia, nem sempre

sao discos.

2.2 Superficies

Defini¢ao 2.6 Uma n—variedade ( ou variedade de dimensdo n) é um espago topolégico
tal que cada ponto x tem uma vizinhang¢a homeomorfa a um disco aberto n—dimensional
com centro em x e raio r, ou seja, D"(x,r) = {y e R" : |[x —y[| < r}.

Vamos também assumir que para quaisquer pontos distintos tenhamos vizinhancgas

disjuntas. Variedades de dimensdo 2 sdo, geralmente, chamadas de superficies.

Defini¢do 2.7 Uma n —variedade com fronteira é um espago topolégico tal que cada
ponto tem uma vizinhanga topologicamente equivalente ou a um disco aberto de dimensao
n, D™(x,r), ou a um meio-disco D} = {x = (x1,%,,...,x,) € R" : ||x]| < r e x,, > 0}. Pontos

cuja vizinhanga é um meio-disco sao chamados de pontos de fronteira.

Definicao 2.8 Uma superficie ndo-orientada é aquela que contém uma faixa de Mobius.
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Exemplo 2.9 Um exemplo de superficie ndo-orientada é a garrafa de Klein. Como ilustra
a Figura (2.1), sua representagio planar

4\

Figura 2.1: Garrafa de Klein com faixa de Md&bius.

contém uma faixa de Mobius.

Na Tabela (2.1) consideramos algumas superficies e caracteristicas relacionadas a
elas, note primeiramente que todas as caracteristicas descritas acima sao proprieda-

des topoldgicas.

Superficie  |Fronteira|Concavidade|Alca|Orientada
Esfera nio sim nio sim
Toro nio sim sim sim
Cilindro sim nao nao sim
Faixa de Mobius sim nao nao nao
Garrafa de Klein| ndao nao sim nao

Tabela 2.1: Classificagdo de algumas superficies.

Além disso, essas superficies listadas caracterizam completamente todas as su-
perficies a menos de homeomorfismos (esse resultado serd provado posteriormente).

Por outro lado, falta considerar superficies como a da Figura (2.2),
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Figura 2.2: Toro com duas algas.

a qual chamaremos de toro com duas algas. Podemos construir toros para um

numero qualquer de algas.

Defini¢ao 2.10 Sejam Sy e S, duas superficies. Removendo um pequeno disco aberto de
cada uma das superficies e colando as fronteiras desses discos obtemos uma nova superficie

chamada de soma conexa de S e S,, escrevemos S;#S,.

A Figura (2.3) representa o plano projetivo, o qual denotaremos por P2. Note que

existe uma faixa de Moébius em P?, entdo a superficie é ndo orientada.

a

Figura 2.3: Diagrama do plano projetivo.
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2.3 Triangulacao

Geralmente é uma vantagem usar células triangulares em um complexo, de modo
que s6 tenhamos um tipo de n-célula. Objetos triangulares tém a boa propriedade

de que o nimero de vértices identifica a dimensdo da célula.

Defini¢ao 2.11 Seja X um espago topolégico de dimensdo 2. Dizemos que X é trian-
gulavel se podemos encontrar um 2—complexo K tal que X = |K| e K tem somente células
triangulares satisfazendo a condi¢do de que quaisquer dois tridngulos sdo identificados
ou ao longo de uma aresta, ou em um iinico vértice, ou sio disjuntos. Um complexo tri-
angular K é chamado de complexo simplicial ou triangulacdo de X. Uma célula de um

complexo simplicial é chamada de simplexo.

Note que a Defini¢do (2.11) implica mais que o espaco possa ser dividido em
tridngulos. Na Figura (2.4) temos um exemplo de complexo celular somente com

2-células triangulares, mas que ndo é uma triangulacao.

Figura 2.4: Exemplo 2 — complexo.

Ainda sobre a Definic¢do (2.11]), note que essa definicdo implica ndo somente que
o complexo sera dividido em tridngulos, mas com a condigao adicional exigida, te-
mos que cada vértice, aresta e tridngulo podem ser unicamente rotulados por uma

atribuicdo de um rétulo em cada vértice.
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Mais geralmente, gostariamos de triangular um complexo qualquer. Cada face
de um 2 — complexo é um poligono e pode ser facilmente dividida em tridngulos,

adicionando um novo vértice no interior do poligono e conectando esse vértice a

cada um dos vértices da fronteira, como ilustra a Figura (2.5).

triangulacao
————

Figura 2.5: Exemplo de triangula¢do de um poligono.

Contudo, podemos notar que esse processo descrito acima nos dd um método de
dividir qualquer 2 — complexo em tridngulos, mas isso ndo nos da uma triangulacdo
satisfazendo a Defini¢do (2.11)). Como ilustra a Figura (2.6).

a a

triangulacao

q

Figura 2.6: Divisdo em tridngulos.
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Defini¢ao 2.12 Seja K um 2—complexo com 2-células triangulares. Um novo complexo
K’ chamado de subdivisdo baricéntrica de K é formado pela introdugio de um novo vértice
no centro de cada tridngulo e um novo vértice no ponto médio de cada aresta, entdo
adicionamos novas arestas conectando o vértice central a cada um dos vértices no ponto
médio e os vértices originais. Em geral podemos descrever esse processo como criar um
novo vértice v, no centro de cada célula o em K, incluindo qualquer vértice P quando

definimos vp = P, e adicionamos uma célula conectando v, a v, sempre que o < T.

A subdivisao baricéntrica nem sempre nos dad uma triangulacdo de um 2—complexo
com faces triangulares. A segunda divisdo baricéntrica sempre € suficiente. Agora

vamos definir em uma superficie uma estrutura combinatorial.

Definicao 2.13 Uma superficie triangulada (sem fronteira) é um 2—complexo simplicial

tal que:
1. Cada aresta é identificada com exatamente uma outra aresta;

2. Em cada conjunto By dos tridngulos que possuem apenas um vértice em comum
V, podemos rotular esses triangulos por T, T Ty onde ny é o nitmero de
tridngulos em By. Além disso, uma aresta de Ty, que contém o vértice V serd iden-
tificada apenas com uma aresta de T, . A outra aresta de T,, que contém o vértice
V sera identificada apenas com uma aresta de T3k e, assim, sucessivamente, até que

identifiquemos a aresta restante de T,, com uma aresta de Ty, .

A condigdo da Definicao garante que pontos em uma aresta pertencem
exatamente a dois tridngulos e, entdo, existe uma vizinhanca em forma de disco
para cada ponto nas arestas, resultando de dois meio-discos colados juntos, um em
cada tridngulo. A condigado (2) da Defini¢ao garante que a vizinhang¢a de um

vértice parece com um disco.

Teorema 2.14 Uma superficie é compacta se, e somente se, qualquer triangulagio usa

um nitmero finito de tridngulos.

Demonstragdo: (= ) Seja S uma superficie compacta, suponha, por absurdo, que
S tem um complexo simplicial com um ntmero infinito de tridngulos. Como S é
uma superficie enriquecida com uma estrutura combinatorial, pela Defini¢ao (2.13),
existe somente uma quantidade finita de tridngulos em cada vértice. Assim sendo,
se existe uma quantidade infinita de tridngulos, entdo existe um numero infinito
de vértices, sobre os quais podemos considerar a sequéncia {v;};>,. Como S é com-

pacta, temos, por definicdo, que essa sequéncia tem um ponto limite v € S. Se v
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estiver no interior de algum tridngulo, entdo v tem uma vizinhanga totalmente con-
tida no interior desse tridngulo, mas isso contradiz o fato de v ser o ponto limite
de um conjunto de vértices. Se v estd ao longo de uma aresta, entdo v tem uma
vizinhan¢a tomada de dois tridngulos, a qual ndo contém nenhum outro vértice,
entdo, novamente, temos uma contradi¢ao. Se v é um vértice, entdo v é o vértice dos
tridngulos Ty, Ty,..., T, e tem sua vizinhanga composta de setores desses tridngulos e
essa vizinhang¢a ndo contém nenhum outro vértice. Entao, nao existe nenhum outro
vértice na vizinhanca de v. Essa contradi¢do implica que sé existe uma quantidade
finita de vértices e, portanto, uma quantidade finita de tridngulos.

(&) Seja S uma superficie construida a partir de uma quantidade finita de tridngulos.
Seja {x;};2, uma sequéncia de pontos em S. Como existe somente uma quantidade

finita de tridngulos e uma quantidade infinita de pontos dessa sequéncia, algum

(ee)
i=1
de {x;};2, em T. Um tridngulo é um subconjunto fechado e limitado de R?, entdo

pelo Teorema de Heine-Borel, T é compacto. Consequentemente, a subsequéncia

tridngulo T contém um ndmero infinito de pontos. Seja {x};7, uma subsequéncia

l}()o
ili=1
{x;};2,. Portanto, S é compacta. O

{x tem um ponto limite x € T C S. Assim, x é um ponto limite para a sequéncia

Teorema 2.15 Uma superficie é conexa se, e somente se, toda triangulagio pode ser orde-
nada na forma Ty, T,..., T, com cada triangulo tendo pelo menos uma aresta identificada

com o tridngulo sequinte na sequéncia.

Demonstragdo: ( — ) Seja S uma superficie conexa com uma dada triangulacao.
Escolha T; como sendo um tridngulo qualquer. Como tridngulos sdo conexos, T é
conexo. Como S é uma superficie conexa, existe um tridngulo T, o qual é colado a T;
ao longo de uma aresta, formando um complexo conexo com dois tridngulos. Entdo
escolha T3 colado ao longo de uma aresta do complexo formado por Ty Ugoragem T2,
assim T Ucoragem T2 Ucolagem T3 € conexo. Continue o processo até envolver todos os
tridngulos da superficie S. Como S é conexa, esse processo continuara contando que
tenham arestas e tridngulos livres.

(&) Vamos provar a contra-positiva. Seja S uma superficie ndo conexa, entdo S
tem, pelo menos, duas componentes conexas. Seja Ty, T5,..., Ty os tridngulos da pri-
meira componente conexa de S e Ty, Txi2,..., T, os tridngulos da segunda compo-
nente conexa. Note que Tj,; ndo esta colado a nenhum dos tridngulos Ty, T5,..., Ty,
pois eles estdo em componentes conexas diferentes. Portanto, ndao podemos colo-
car os tridngulos na ordem Tj,T5,..., T, com cada tridngulo tendo pelo menos uma

aresta identificada com o tridngulo seguinte na sequéncia. O
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2.4 Classificacao de superficies

Agora, vamos caracterizar completamente todas as superficies compactas sem fron-

teira.

Teorema 2.16 Toda superficie compacta e conexa é homeomorfa ou a uma esfera, ou a

soma conexa de toros ou a soma conexa de planos projetivos.

Demonstracao:

Passo 1: Construcao de um modelo planar para a superficie

Seja S uma superficie, suponha que S é representada por um complexo triangulado.
Como S é uma superficie compacta, entdo, pelo Teorema (2.14), todo complexo sim-
plicial em S tem somente um numero finito de tridngulos. Como S é conexa, entdo,
pelo Teorema (2.15), temos que a lista de tridngulos pode ser colocada numa ordem
de modo que cada tridngulo é colado ao seu sucessor na ordem. Existem diversas
maneiras de ordenar os tridngulos, entao coloque-os em uma ordem qualquer para
formar o poligono que é a representacdo planar da superficie. Os vértices externos
do poligono devem ser colados para formar a superficie. Como S é um superficie,
cada aresta é identificada a exatamente uma outra aresta. As arestas do interior ja
estdo identificadas, entao as externas devem ser identificadas em pares.

Passo 2: Um atalho

Se uma sequéncia de arestas ocorre duas vezes exatamente na mesma ordem, le-
vando em consideracdo as direcdes das arestas, podemos juntar todas as arestas

dessa sequéncia em uma tnica aresta, como ilustra a Figura (2.7)

c 4]

b b d d
_—

a c

Figura 2.7: Simplificando um rétulo.
Fonte: [7]], p. 80.

Note que arestas podem ocorrer de duas formas: pares opostos ou pares torcidos. Se

percorrermos ao longo do perimetro em qualquer sentido, pares torcidos aparecerao
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na mesma dire¢do, enquanto que pares opostos aparecerdao com dire¢oes opostas.
Passo 3: Eliminando pares opostos adjacentes

Pares opostos adjacentes podem ser eliminados colando-os juntos, como ilustra a

Figura (2.8))
a (!
— —
a
a

Figura 2.8: Eliminando pares opostos adjacentes.
Fonte: [7]], p. 81.

Note que se existem somente arestas formando pares opostos adjacentes, entdo a
superficie S é uma esfera S?.
Passo 4: Eliminando todos a menos de um vértice
Escolha qualquer um dos vértices presentes no poligono e realize o processo que

remove 0s outros vértices um a um, como ilustra a Figura (2.9)

.Q-QD

Q PG'Q

Figura 2.9: Eliminando o vértice Q a favor do vértice P.
Fonte: [7]], p. 82.

Assim, ao remover um vértice especifico serd adicionado mais um vértice com um
réotulo diferente daquele que foi escolhido para ser removido. Repetimos esse pro-
cesso até sobrarem apenas vértices com o mesmo rétulo.

Passo 5: Coletando pares torcidos
Podemos fazer pares torcidos de arestas tornarem-se pares torcidos adjacentes e
entdo elimina-los, como ilustra a Figura
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a . a b
a b a
/
- b

Figura 2.10: Colocando pares torcidos juntos.
Fonte: [7]], p. 83.

Se, apds completarmos esse passo tantas vezes quanto necessdrio, nao existirem
mais arestas de nenhum outro tipo, entdo a superficie S é a soma conexa de planos
projetivos P2.

Passo 6: Coletando pares de pares opostos

Se os Passos 1 e 5 foram realizados, entao quaisquer pares opostos devem aparecer
em pares. Entdo podemos fazer pares opostos de arestas aparecerem juntos, como
ilustra a Figura (2.11})

b c c
a a a a
a e __, -
b ¢ ¢
¢
2 e . d d c
o c d
o ., d} T,
e

Figura 2.11: Colocando pares opostos juntos.
Fonte: [7], p. 84.

Se ao realizar o processo para coletar pares opostos tantas vezes quanto necessdrio

nao existirem pares torcidos de arestas, entao a superficie S é a soma conexa de to-
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ros T2.

Passo 7: Combinagdes de T? e P?

Nesse ponto, ou a superficie ja foi classificada ou o diagrama planar contem em-
parelhamentos de pares torcidos e opostos, entdo a superficie é a soma conexa de

planos projetivos e toros. Esse caso é resolvido utilizando a seguinte igualdade T? #
P? = P2#P?#P?, como ilustra a Figura (2.12).

Figura 2.12: T? # P? = P2#P2#P2.
Fonte: 7], p. 85.

Assim, a combinagao de toros e planos projetivos podem ser convertidas na soma
conexa de planos projetivos somente. O

Uma superficie triangulada com fronteira é um espaco topolégico obtido de um
conjunto de tridngulos com arestas e vértices identificados como os das superficies
da Defini¢do (2.13), exceto para alguns vértices e arestas que ndo sdo identificados.
Essas arestas ndo identificadas formam a fronteira da superficie. Superficies com
fronteira podem ser classificadas através de uma extensdo do Teorema (2.16). Pri-

meiramente, vamos dar uma defini¢do combinatorial para superficies com fronteira.
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Definicao 2.17 Uma superficie triangulada com fronteira é um espago com um 2 —

complexo simplicial tal que:
1. Cada aresta no interior é identificada com exatamente uma outra aresta;

2. Em cada conjunto By dos tridngulos que possuem apenas um vértice em comum
V, podemos rotular esses triangulos por T, 1o Ty onde ny é o nitmero de
tridngulos em By. Além disso, uma aresta de Ty, que contém o vértice V serd iden-
tificada apenas com uma aresta de T,,. A outra aresta de T, que contém o vértice
V sera identificada apenas com uma aresta de T, e, assim, sucessivamente, até que

identifiquemos a aresta restante de T,, com uma aresta de Ty, .
3. Nenhuma aresta que ndo esta na fronteira pode ter ambos os vértices na fronteira.

A condicao (3) da Definigdo (2.17) é adicionada para que seja possivel identificar
claramente os vértices e arestas que estdo na fronteira. Se os vértices A e B estdo na

fronteira, entdo a aresta AB deve estar na fronteira.

Teorema 2.18 Uma superficie compacta e conexa com fronteira é topologicamente equi-
valente ou a uma esfera, ou a soma conexa de toros ou a soma conexa de planos projetivos,

com um niimero finito de discos abertos removidos.

Demonstragdo: Aplicando uma subdivisdo baricéntrica, se necessdrio, no complexo
simplicial podemos garantir que a Defini¢ao serd satisfeita. Construa um mo-
delo planar para a superficie. Cole todos os tridngulos que possuem vértices ou
arestas na fronteira para formar o diagrama planar da regido da superficie que en-
volve a fronteira. Se a fronteira tem mais de uma componente sera necessario fazer
esse processo mais de uma vez. Posteriormente, cole todos esse diagramas plana-
res e tridngulos que ndo estdo na fronteira para formar o diagrama da superficie, o
qual terd buracos no interior. As outras arestas estdo identificadas aos pares. Rea-
lize os passos da demonstra¢do do Teorema tomando cuidado para ndo cortar
nenhuma componente da fronteira. Como no Teorema obtemos as formas

desejadas, mas com buracos topologicamente equivalentes a discos. O

2.5 Invariantes topolégicos

No Teorema (2.16) provamos que todas as superficies sem fronteira podem ser
classificadas em trés tipos: a esfera, somas conexas de toros e somas conexas de

planos projetivos. N6s nao provamos, ainda, que esses trés tipos de superficies sao
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realmente diferentes e esse é 0 nosso préoximo objetivo. Vamos introduzir um sim-
ples invariante topoldgico: a caracteristica de Euler. Esse é o primeiro passo para a
algebrizacao da topologia: encontrar alguma ferramenta algébrica que caracteriza a

estrutura topolégica do espago.

Defini¢ao 2.19 Uma quantidade a é um invariante topologico se, sempre que X e Y

forem topologicamente equivalentes, entdo a(X) = a(Y).

Idealmente, gostariamos de um invariante topoldgico que satisfaca a condigao de
que se a(X) = a(Y), entdo X e Y sdo topologicamente equivalentes. Veremos que a

caracteristica de Euler é muito simples para conseguir isso.

2.6 Grafos

Antes de tentarmos estabelecer invariantes topolégicos em superficies, vamos con-

siderar 1 — complexos.

Defini¢ao 2.20 Um grafo, I, é um 1 — complexo conexo.

Grafos sao constituidos somente de vértices e arestas. Quaisquer dois vértices em

um grafo sdo conectados por algum caminho ao longo das arestas e vértices do grafo.
A Figura (2.13) exibe alguns exemplos de grafos.

Figura 2.13: Exemplos de grafos.

Note que alguns grafos da Figura (2.13)) tem loops ou ciclos: caminhos em um grafo

que comecam e terminam em um mesmo vértice.
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Defini¢ao 2.21 Uma arvore, T, é um grafo que ndo possui ciclos.

Gostariamos de definir um invariante topoldgico que possa distinguir as arvores

dos outros tipos de grafos.

Definicao 2.22 Seja I um grafo, definimos por x(I') = v—e, onde v é o nfimero de vértices

e e & o niimero de arestas, a caracteristica de Euler de T.

Teorema 2.23 Seja T uma arvore. Entdo x(T) = 1.

Demonstragdo: Faremos um prova por indugdo no numero de arestas de T. Note
que se e = 0, entdo a arvore T consiste de um tunico vértice, assim v = 1. Nesse
caso, x(T)=v—-e=1-0=1. Assuma que o teorema seja verdadeiro para todas
as drvores com menos de n arestas, e seja T uma arvore tal que e = n. Seja 4 uma
aresta arbitrdria, remova a aresta a da arvore T e, note que, teremos duas arvores

desconexas T e T,. Como ilustra a Figura (2.14).

T

T

Figura 2.14: Remover aresta de uma arvore.

Note que esse fato segue de que se T \ {a} ndo for desconexo, entdo existe outra
aresta conectando os pontos desconectados em T \ {a}. Entretanto, essa aresta junta-
mente com a aresta a formam um loop e isso contradiz o fato de que T é uma arvore.

Assim as arvores T} e T, tem menos de n arestas, entdo pela hipétese de inducao,

x(Ty)=vy—e; =1
X(T))=vy—ey=1
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Note que cada vértice de T estd ou em T; ou em T,, mas ndo em ambos, assim,
v = v; +v,. As arestas de T consistem na aresta 4, nas arestas de T e nas arestas de

T,, entdo e =1+ e +e,. Entdo,

x(T)=v—e
:(U1+U2)—(1+€1+€2)
=(vi—e))+(vy—ey)-1

=1+1-1=1.

O

Todas as arvores tem a mesma caracteristica de Euler. Entretanto, isso ndo nos
mostra que todas as arvores sdo topologicamente equivalentes, mas nos mostra al-
guma coisa sobre a forma das drvores. O préximo teorema nos dara informagodes

sobre a caracteristica de Euler para grafos que contém loops.

Teorema 2.24 Seja I um grafo com n loops (ou ciclos) distintos. Entdo x(I') =1 —n.

Demonstragdo: Para cada um dos #n ciclos em I', podemos remover uma aresta sem
desconectar o grafo, pois cada ciclo implica em uma redundancia de caminhos en-
tre dois vértices. Apds fazermos isso, teremos um novo grafo sem nenhum ciclo, ou
seja, uma arvore T. Assim, pelo Teorema (2.23), x(T) = 1. Note que a arvore T ndo
é Unica, mas ela contém todos os vértices de I', com n arestas a menos. Consequen-

temente,

1=x(T)=v—(e—n)

[l
5
|
L\;
+
=
[l
=
3
+
x

Portanto, x(I') =1 —n. 0J
A caracteristica de Euler ndo mostra uma descrigao precisa do grafo, mas nos mos-
tra informagao importantes sobre sua forma. O préximo teorema nos mostra que a

caracteristica de Euler é um invariante topolégico.

Teorema 2.25 Sejam I e I, grafos topologicamente equivalentes. Entdo x(I7) = x(I3).

Demonstragdo: Por hipétese, temos que |[}| e |I;| sdo homeomorfos. Um vértice
que se conecta somente com uma aresta serd chamado de vértice final. Um vértice
com mais de duas arestas (neste caso, arestas que comegam e terminam no mesmo
vértice contam duas vezes) sera chamado de vértice ramificado. Note que homeo-

morfismos levam vértices finais em vértices finais e vértices ramificados em vértices
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ramificados com o mesmo numero de arestas neles. Assim, os vértices finais e os
vértices ramificados de I e I, coincidem. Seja I' um grafo obtido adicionando os
vértices de I em I, ou vice-versa. Note que adicionar vértices no meio de uma
aresta ndo muda a caracteristica de Euler do grafo. Assim, I} e I, tem a mesma
caracteristica de Euler de T', entao x(I7) = x(I,). O

2.7 A caracteristica de Euler e o problema de colorir

mapas

Vamos definir a caracteristica de Euler, que ¢ um importante invariante topolégico,

de uma maneira mais generalizada.

Definicdo 2.26 A caracteristica de Euler de um complexo K de dimensdo n é dada por

onde #k é o niimero de k-células em um complexo K.

Em particular, se considerarmos 2 — complexos, ou seja, superficies, obtemos a se-

guinte formula para a caracteristica de Euler

x(K) = v(K) —e(K) + f(K),

onde K é um 2 — complexo, v(K) é o nimero de vértices de K, ¢(K) o namero de

arestas de K e f(K) o numero de faces de K.

Teorema 2.27 Se |K| e |L| sdo superficies compactas, conexas e |K| = |L|, entdo x(K) =
x(L).

Definicao 2.28 Se S é uma superficie compacta, conexa e S = |K| para um complexo K,
defina x(S) = x(K).

Pelo Teorema (2.27)) temos que x(S) esta bem definida, e posteriormente, que a ca-
racteristica de Euler de uma superficie é um invariante topoldgico.
O préximo resultado relaciona a caracteristica de Euler da soma conexa de su-

perficies com a caracteristica de Euler de ambas as superficies.
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Corolario 2.29 x(S1#Sy) = x(51)+ x(S;) - 2.

A Tabela (2.2) nos fornece a caracteristica de Euler de algumas superficies.

Superficie
SZ
TZ
K2
]P)2
Faixa de Mobius

N | OO N

Tabela 2.2: Caracteristica de Euler de algumas superficies.

Teorema 2.30 Toda superficie compacta e conexa é homeomorfa a exatamente uma das

seguintes: S?, n.T?, ou n.P?

Demonstragao: Pelo Teorema da classificacdo de superficies (2.16)) é suficiente mos-
trar que S?, n.T?, e n.P? sdo topologicamente distintas. Pela Tabela (2.2) e Corolario

, temos que:
1. x(S*)=2;
2. x(n.T?)=2-2n;
3. x(nP?)=2-n.

O tnico caso de sobreposigdo ocorre quando x(1n.T?) = x(2n.IP?). Em outras palavras,
pelo Teorema , precisamos mostrar que 7.T? nao é homeomorfa a 2n.P2. De
fato, observe que n.T? tem um campo vetorial normal continuo apontando para
fora com n.T? c R3, e entdo #n.T? ndo contém umma faixa de Mébius. Contudo, P?
contém uma faixa de Mobius, e entdo P?#S também contém uma faixa de Mdbius
para qualquer superficie S. Em particular, 2n.P? contém uma faixa de Mébius, e
consequentemente 7.T? ndo ¢ homeomorfa a 2n.P?2. O

Agora temos as ferramentas para identificar e distinguir superficies. Com o Teo-
rema da classificagdo de superficies (2.16), mostramos que todas as superficies po-
dem ser reduzidas a um dos trés tipos. Com os Teoremas e (2.30), mostramos
que essas trés classes de superficies sdo as unicas superficies compactas e conexas
distintas.

A seguir daremos uma aplicagdo para a caracteristica de Euler.
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Um mapa geografico pode ser visto como um complexo com vértices, arestas e faces.

O problema ¢ colorir o mapa.

Defini¢ao 2.31 Uma coloragio boa de um mapa é uma tal que faces adjacentes nio pos-

suem a mesma cor.

Queremos saber o numero de cores necessdrias para que exista uma coloragdo boa
para um mapa. O Lema (2.32), cuja demonstragdo pode ser encontrada em [7], nos

da um limitante superior para esse nimero.

Lema 2.32 Seja S uma superficie, S = |K|, onde o complexo K tem e(K) arestas e f(K)

faces. Se i‘e((lf))
por K.

< N, entdo N cores sdo suficientes para colorir o mapa em S determinado

Agora temos um limitante superior para o numero de cores de uma coloragao boa

em uma superficie em termos da quantidade de arestas e faces do complexo asso-
. . . . ~ e .
ciado a essa superficie. A seguir mostraremos a relagdo entre — e a caracteristica

de Euler. Para tanto, utilizaremos o seguinte resultado, cuja demonstracdo pode ser

encontrada em [7]].

Lema 2.33 Seja v(K) o nitmero de vértices do complexo K e e(K) o ntimero de arestas.

2e(K
Entao, v(K) < e; ).

Teorema 2.34 Seja S uma superficie e K um complexo arbitrario em S com e(K) arestas
e f(K) faces, entdo

sy <[ i)

. Con-

—e(K
Demonstragdo: Pelo Lema (2.33) temos que x(S)— f(K) = v(K) —e(K) < e; )
sequentemente, 3(f(K)— x(S)) > e(K). Dividindo ambos os lados por f(K) temos o

resultado desejado. O

Teorema 2.35 Sejam S uma superficie compacta e conexa, e N(S) o ntimero minimo de

cores necessarias para colorir todos os mapas em S. Entdo, N(T?) =7 e N(P?) = 6.

Demonstragdo: Primeiramente, vamos mostrar que N(T?) < 7 e N(P?) < 6. De fato,

2¢e(K)
f(K)

para o toro, pelo Teorema (2.34), temos que < 6. Consequentemente, pelo
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Lema (2.32)), 7 cores sao suficientes para colorir qualquer mapa no toro. Analoga-
X(S)

mente para o plano projetivo, N(P?) > 6 (1 - m) Entao, 6 cores sdo suficientes. A
necessidade é pode ser observada na Figura (2.15).

Figura 2.15: Um mapa no toro com 7 cores e um mapa no plano projetivo com 6
cores.

Fonte: [7]], p. 112.

Note que cada face é adjacente a outra face, e entao esse mapa ilustra a necessidade.
Portanto, N(T?) =7 e N(P?) = 6 como desejado.
O

2.8 A algebra de cadeias

Defini¢ao 2.36 Um 2 —complexo é direcionado se a cada aresta ou 1-célula é dada uma
orientagdo (do ponto inicial ao ponto final) e a cada poligono ou 2-célula é dada uma

orientagdo (horario ou anti-horario).

Note que a escolha de orientagdo para as arestas e poligonos é arbitraria, assim um

complexo pode ser orientado de diversas maneiras.

Definicdo 2.37 Seja K um complexo orientado. Uma k — cadeia C (inteira) em K é a

soma

C=ay01+:-+a,0,

onde oy,...,0, sdo k-célulasem K eay,...,a, € Z. Além disso, definimos, 0c =0 Vo € K.

Exemplo 2.38 Considere o seguinte complexo orientado no toro dado na Figura (2.16).
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Figura 2.16: Complexo orientado no toro.

Alguns exemplos de cadeias para o complexo definido na Figura sdo:
e As 0—cadeia 2P,0P =0,-P,P+Q,...
* As1—cadeia 2a,-b,3c,2a—b+ 3¢, ...
* As2—cadeia 20,T-3p,0 +T+p,...
No que segue, vamos definir uma aritmética para as k — cadeias.
Definicao 2.39 Sejam C e D duas k — cadeias em um complexo orientado K tais que
C=ay01+--+a,0,eD=bjo;+---+b,0,.
A soma C + D é definida por
C+D=(a;+by)oy+---+(a,+b,)o,.
Teorema 2.40 Sejam C;, C, e C5 k—cadeias em um complexo orientado K. Entdo valem
(1) C1+Cy=Cy+Cy;
(2) (C1+Cy)+C5=C1+(C+Cy);
(3) C1+0=Cy;
(4) C;-C; =0.

Demonstragdo: A demonstracdo segue para cada item,
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(1) Sejam Cy =ajoq +---+a,0,, C; =bjoy+---+b,0,e C3=cy0y++--+,0,. Por

definicdo temos que

C1 +C2 = (611 +b1)(71 +---+(an+bn)an
=(by+ay)oy+---+ (b, +a,)o,
= C2+C1.

(2) Sejam Cy, C; e C3 como em [(1)] Por definigdo temos que

(C1+Cy)+C3=((a; +by)oy +---+(a, +b,)o,)+ (ci00 + -+ ¢,,0,)
= (a1 +b1) +cr)or +---+ ((ay + by) + ¢y) 0y
= (a1 + (b1 +c1))or +-+ +(a, + (by +cy))oy
=(ajoy +---+a,0,)+ (b1 +c1)or +-+ + (b, + ¢,)0)

= Cl + (C2 + C3)
(3) Seja C; como em|[(T)} Note que por defini¢do, @ = 0oy +--- + 00,,. Consequente-

mente,

Ci+0=(a; +0)oy +--+(a,+0)o,
=ai01+---+a,0y,

:Cl'

(4) Seja C; como no em Por definicao temos que

C,-Cy=(ay—ay)oy +---+(a, —a,)o,
=00y +---+ 00,
=0.
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Definicao 2.41 Seja K um complexo orientado. Vamos denotar o grupo de todas as
k —cadeias em K por Cy(K) = (Cx(K),+) para k =1,2,...,dim(K).

Note que Ci(K) é um grupo abeliano, segue diretamente do Teorema (2.40). Note
também que para complexos finitos, em particular toda superficie do teorema de
classificacao, os grupos Ci(K) serdo finitamente gerados, e entdao, Ci(K) serd um
grupoda forma Z" =Z&--- @ Z.

Definicao 2.42 A fronteira de uma k-célula o, denotada por d(c), é a (k—1)— cadeia

com todas as (k-1)-células que sdo faces de o, com dire¢do herdada da orientagdo de o.

A fronteira de uma 0-célula é definida com o conjunto vazio. Sendo P uma 0-
célula, entdo d(P) = 0. Estendendo por linearidade, podemos definir a fronteira de

uma cadeia.

Defini¢ao 2.43 Seja C uma k — cadeia, entdo C = a;oy + -+ +a,0,. A fronteira de C é
definida por

d(C) =a,d(oy)+---+a,d(o,).

O operador fronteira pega uma k —cadeia e nos da uma (k—1)—cadeia. Entao, esse

operador pode ser definido como uma funcgao

d: Ci(K) - Cr_1(K) (2.1)

que definida desta maneira é um homomorfismo para qualquer complexo K.
A proposta de desenvolver tal operador é a de que ele nos de alguma informagao
sobre a forma do complexo. Entretanto, note que, geometricamente, quando d(o) =
0 nao significa que a célula ndo tem fronteira, mas sim que as arestas de sua fronteira

se cancelam.

Definicdo 2.44 Se C é uma k —cadeia em um complexo orientado K e d(C) = 0 entdo C

éum k —ciclo. O conjunto de todos os k —ciclos em K é denotado por Z(K).

Note que Z;(K) C Cr(K) e o grupo (Zi(K),+) é um subgrupo de (Ci(K),+). Além
disso, Zx(K) é o nicleo do homomorfismo (2.1). As 1-células que formam loops
parecem ser importantes, visto que a presenca desses loops em grafos determina a

caracteristica de Euler do mesmo. Assim, podemos definir as k — fronteiras.
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Definicao 2.45 Se C é um k — cadeia em um complexo orientado K tal que existe uma
(k+1)—cadeia D com d(D) = C, entdo C é uma k — fronteira. O conjuntos de todas as
k — fronteiras em K é denotado por B(K).

Note que Bi(K) C Cr(K) e o grupo (Bi(K),+) é um subgrupo de (Cx(K),+). Além
disso, Bx(K) é a imagem do homomorfismo (2.1).

2.9 Complexos simpliciais

A partir de agora, vamos considerar os complexos simpliciais, os quais possuem
apenas células triangulares, os quais possuem algumas vantagens teéricas.
Por exemplo, um k — simplexo sempre tem k + 1 vértices, mas em um complexo
ndo simplicial nem sempre se verifica isso, um poligono pode ter um nimero qual-
quer de vértices. Entdo, o namero de vértices nos da imediatamente a dimensdo
do simplexo. Além disso, a ordenagdo dos vértices nos da uma orientacdo natu-
ral para o simplexo. Vamos denotar por < vy > um vértice ou 0 — simplexo vg;
< vg,v1 > a aresta ou 1 —simplexo com orientagao de vy para vy; < vy, vy,v; > €
0 2 —simplexo com vértices vy, v, e v, orientados nessa ordem. Um 3 — simplexo
< Vg, V1,Vp,v3 > € orientado por uma hélice orientada pela ordem dos vértices. Um
n —simplexo é denotado por < vy,vy,...,v, >. Mudando a ordem dos vértices mu-
damos a orientacdo do simplexo. As faces de um n —simplexo < vy,vy,...,v, > irdo
ser todos os (n—1)—simplexos formados por esses vértices. Esses (n—1)—simplexos
irdo ter n — 1 vértices escolhidos de vy, vy,...,v,, entdo podemos denotar um desses
(n—1)—simplexos por < vy,vy,...,V,...,V, >, onde vy é o vértice omitido. Assim, a

fronteira de um n —simplexo é dada por

n

d(<vg,v1,...,v,>) = Z(—l)k <V ViyeeesVhpenes Uy >
k=0

Essas regras podem simplificar a demonstracao de alguns teoremas, especialmente

em dimensao maior que dois.

Lema 2.46 Se o é um n—simplexo, entio d o d(c) = d(d(0)) = 0.

Demonstragdo: Seja 0 um n —simplexo tal que

0 =<70,V1,...,Vy >
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Entao,

= (—1)k8(< Vs VlyeveyVkrernr Uy >)

k=0
n k-1 n
k . - - s — —
=) (-1) Z(—l)l<vo,vl,...,vi,...,vk,...,vn>+ Z(—l)’<vo,vl,...,vk,...,vi,...,vn>
k+i — — k+i—1 — _
= Z(—l) V0, Ve Uiy Upyeany Uy >+ Z(—l) T V0, Ve Vlyer ey Uiy y Uy >
i<k<n i<k<n
_ _1 k+1 _1 k+i—1 —_ =
= (=) +(-1) VY VyenesVhirevey Ugperey Uy >
k=i
:ZO<vo,vl,...,v_k,...,v_i,...,vn>
k=i
=0

U

Teorema 2.47 A composigido dod : Ci(K) — Cy_»(K) satisfaz dod(C) = 0 para qualquer

k —cadeia em um complexo K.

Demonstragdao: Vamos assumir que o complexo esta triangulado. Seja C = a,07 +
-++4a,0, uma k —cadeiaem K,onde a; e ZVie{l,2,...,n} e 0; é um k—simplexo em
K Vie{l,2,...,n}. Portanto,

d(C)=d(ajo1 +--+a,o,)

=ayd(oy) +---+a,d(oy,)

Consequentemente,

d(d(C)) = d(ard(01) + -+~ +a,d(0,))
= ala(a(gl)) teee T+ ana(a(an))

Pelo Lema (2.46), como o; é um simplexo Vi € {1,2,...,n}, temos que d(d(o;)) = 0
VYie{l,2,...,n}. Logo,
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d(d(C)) = a,9(d(01)) + -+ +a,d(d(0y,))

=a10+---+a,0

O

Observagido 2.48 Como consequéncia direta do Teorema temos que toda k—f ronteira

éum k —ciclo.

2.10 Grupos de homologia

Uma observagdo sobre os grupos Cy, Zi e By é que eles dependem muito do com-
plexo que estamos trabalhando e isso torna obscuro o entendimento do espago. Bus-
camos uma maneira de obter somente os fatos essenciais sobre a forma do espaco.
Dois complexos diferentes sobre o toro podem dar dois grupos de cadeias total-
mente diferentes. Gostariamos de dizer que ambos os espagos tem a mesma forma.
Note que um 2 —ciclo pode descrever uma cadeia cujas arestas sao coletadas juntas
para formar uma cavidade vazia. Os 1 —ciclos sdo arestas que formam loops. Uma
cadeia, na qual ndo existem ciclos, nao pode-se ter uma cavidade ou loop. Assim, os
ciclos parecem ter uma importancia especial no sentido de determinar a forma do
espaco. Por outro lado, alguns ciclos parecem ser redundantes.

Estamos tentando fazer algebricamente o que o teorema da classificacdo faz geome-

tricamente, ou seja, encontrar maneiras de filtrar informag¢des ndo tdo relevantes.

Definicao 2.49 Dizemos que duas k — cadeias Cy e C, sdo homdlogas, escrevemos Cy ~
C,, se C; — C, € Bi(K), ou seja, se C; — Cy = d(D) para alguma (k + 1) — cadeia D.

Teorema 2.50 Seja K um complexo, com Cy,C,, C5 e Cy cadeias em Cy(K). Entdo, vale

que
(1) C; ~Cy;
(2) Se C; ~ C,, entdo Cy ~ Cy;
(3) Se C; ~Cy e Cy~ Cs, entido C; ~Cs;

(4) Se Cl ~ C2 e C3 ~ C3, entdo Cl + C3 ~ C2 + C4.
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Demonstragdo: A demonstracdo segue para cada item,

(1) Vamos mostrar que existe uma (k + 1) — cadeia D tal que d(D) = C; — C;.
Note que, pelo Teorema (2.40), temos que C; — C; = 0. Portanto, considere
0 € Ciy1(K). Assim, d(0) = 0, portanto, C; — C; = 0 € Bi(K).

(2) Suponha que C; ~ C,, vamos mostrar que existe uma (k + 1) — cadeia E tal que
d(E) = C, — C;. Note que, por hipétese, C; ~ C,, ou seja, existe D € Cy,1(K)
tal que d(D) = C; — C,. Considere E = —D, note que E € Cy,(K), além disso,
d(E)=d(-D)=—-(C; - Cy) =Cy - C;. Logo, C, ~ C;.

(3) Suponha que C; ~ C, e C, ~ C3, vamos mostra que existe uma (k + 1) — cadeia
D tal que d(D) = C; — C3. De fato, exitem E, F € Cy,1(K) tais que d(E) = C; - C,
e d(F) = C, — C3. Considere D = E + F, assim, d(D) = d(E + F) = d(E) + d(F) =
(C;1—Cy)+(Cy—C3)=C; —Cs. Logo, C; ~ Cs.

(4) Suponha que C; ~ C, e C3 ~ C4, vamos mostra que existe uma (k + 1) —cadeia
D tal que d(D) = (Cy + C3) — (C, + C4). De fato, exitem E,F € Cy,(K) tais que
d(E)=Cy—C, e d(F) = C3—Cy. Considere D = E + F, assim, d(D) = d(E + F) =
A(E)+d(F)=(C;—Cy)+(C35-C4) = (C1+C5)—(Cy+Cy). Logo, C; +C3 ~ Cy+ Cy.

O
Note que as condi¢des do Teorema ([2.50) mostram que ~ é uma relacdo de equi-

valéncia e, além disso, que ~ funciona bem em conjunto com a adi¢ao de cadeias.

Definicao 2.51 Seja K um complexo direcionado. O k-ésimo grupo de homologia de K é
definido pelo

Hy(K) = Zk(K)/Bk(K)r

ou seja, o grupo das classes de equivaléncia dos elementos de Zi(K) com relagdo a homo-

logia. Em outras palavras, Hi(K) é Zy(K) com homologia usada como igualdade.

Os grupos de homologia combinam todas as informagées essenciais que temos co-
letado, ou seja, quais células formam loops ou cavidades e, além disso, dispensa
informagoes repetidas. O processo para encontrarmos Hy(K) pode ser feito da se-

guinte maneira.

Calculo de H(K) para um complexo orientado K:

Primeiramente, rotulemos e indiquemos uma orientagdo para todas as células do
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complexo. Fagamos os cédlculos para uma dimensao por vez, comecando pela maior.

(1) Encontre Ci(K), o grupo de todas as k — cadeias;
(2) Para cada k —cadeia C geradora de|(1), calcule d(C);
(3) Encontre Z;(K), usando os calculos de|(2)

(1) Note que se Z;(K) = {0}, entao Hi(K) = {0};

(4) Encontre By (K);

(1) Quando estamos na dimensdo mais alta, note que Bi(K) = {0}, pois nao

existem (k + 1) — cadeias para umas das k — cadeias serem fronteira;

(2) Caso ndo estivermos na dimensdo mais alta, voltemos para onde ja

temos calculado quais k — cadeias sao fronteiras de (k+1)-células;

(3) Note que se Bi(K) = {0}, entao Hi(K) = Z;(K);
(5) Calcule Hi(K), tomando Z;(K) e qualquer homologia B (K) encontrada.

Agora, vamos fazer um exemplo para ilustrar o processo descrito acima.

Exemplo 2.52 Vamos calcular os grupos de homologia para a garrafa de Klein (K?) com

um complexo dado como na Figura (2.17).

Q d Q
Q d Q

Figura 2.17: Complexo orientado na garrafa de Klein.
Vamos calcular Hy(K?). Note que C,(K?) = (ko : k € Z} ~ Z. Além disso, d(c) =

c+d—c+d =2d, entdo o nio é um ciclo e Z,(K?) = {0}. Por outro lado, B,(K?) = {0},

pois ndo existem 3-células. Assim,
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H,(K?) = Z5(K?) ~ 0.

Vamos calcular Hy(K?). Note que C,(K?) = {kc+1d : k,l € Z} ~ Z®Z. Além disso,
d(c)=0dd)=Q—-Q =0, entdo Z;(K?) = lkc+1d : k,l € Z} ~ Z&®Z. Por outro lado,
d(o) = 2d, o grupo de homologia 2d ~ 0. Assim,

H(K*) =lkc+ld:kleZe2d=0)~L8ZL/,,

Vamos calcular Hy(K?). Note que Co(K?) = (kQ : k € Z} ~ Z. Além disso, I(Q) =
entdo Q é um 0 —ciclo e Zy(K?) = {kQ : k € Z} ~ Z. Por outro lado, d(c) =0 e d(d) =
entido By(K?) = {0} ~ 0. Assim,

01
0

4

Hy(K?) = Zo(K?) ~ Z.

Uma caracteristica adicional dos grupos de homologia, com relacdo a caracteristica
de Euler, é que HZ(TZ) =7Ze H2(K2) = 0, ou seja, os grupos de homologia do toro
e da garrafa de Klein sdo distintos. Em cada dimensao, Hi(K) nos d4 uma parte
da informagcao relativa as propriedades determinadas em cada dimensdo. O grupo
Hy(K) mede a conectividade do complexo K, se, por exemplo, Hy(K) = Z", entdo n é
o numero de componentes conexas de K. O grupo H;(K) conta o numero de loops

ndo triviais e H,(K) conta o nameros de buracos e cavidades em dimensao 2.

Teorema 2.53 Seja S uma superficie compacta conexa e sem fronteira. Se S é orientavel,
entdo H,(K) ~7Z. Se S ndo ¢é orientavel, entdo H,(S) ~ 0.

Demonstragdo: Considere uma triangulagao da superficie S. Sejam o e 7 dois 2 —
simplexos adjacentes com aresta em comum a. Se eles tem a mesma orientacdo,
entdo a aresta a é cancelada na soma o + 7. Entretanto, se eles tem orientacao oposta,
entdo +2a estd na fronteira de 0 +71. Note que os 2—simplexos em K ndo tem a mesma
orientacdo se, e somente se, |K| contém uma faixa de Mobius. Assim, se todos os
2 —simplexos de K podem ser orientados, entdo eles tem a mesma orientacdo, logo
K serd um complexo em uma superficie orientdvel, ou uma esfera ou a soma conexa
de toros. Considere a 2 —cadeia C soma de todos os 2 —simplexos em K. Como cada
aresta em K é fronteira de exatamente dois tridngulos os tridngulos tem orientagao
compativel, temos que d(C) = 0 e C é um ciclo. Como nédo existem 3-células, o

segundo grupo de homologia é

Hy(S) = (kC:keZ)~Z.
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Por outro lado, se K contém uma faixa de Mobius, entdo K é um complexo em uma
superficie nao orientavel, a qual é a soma conexa de planos projetivos. Seja C um
2 —ciclo em K. Se o é um simplexo em C, entdo todos os tridngulos adjacentes a o
estdo em C desde que d(C) =0, e entdo existe uma célula y tal que y +0 =0 . Logo,
C contém todas as 2-células de K, mas algumas nao possuem orientagdo compativel,

algumas arestas nao se cancelam. Assim, C nado é um ciclo, portanto

A Tabela (2.3)) nos fornece os grupos de homologia de algumas superficies.

Variedade |H,| H; |H

S? 7 0 Z

T? Z| ZeZ |7

K? 0|28Z)y| Z

P? 0| Z/p, |z

St 0 7 |7
Cilindro 0 Z Z
Faixa de Mobius| 0 7 7
Disco 0 0 Z

Tabela 2.3: Grupos de homologia de algumas superficies.

Note que para diferentes superficies, por exemplo, S! e o Cilindro, podemos ter os
mesmos grupos de homologia.
Novos complexos podem ser construidos com um grupo de homologia desejado,
contando que eles sejam combinag¢bes dos grupos apresentados na Tabela (2.3),

usando os seguintes teoremas.

Teorema 2.54 Sejam K e L complexos simpliciais conexos com KNL = 0. Seja X = KUL.

Entdo, para k =0,1,2,...

Hi(X) = H(K) @ Hi (L)
O espago X = KU L formado é chamado de unido disjunta de K e L.

Teorema 2.55 Sejam K e L complexos simpliciais conexos com K N L = {P}, para algum

veértice P. Seja X = KU L. Entdo, X é um complexo simplicial e
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Hi(X) = H(K)® Hg(L),se k>0
Hy(X)=Z,se k=0.

O espago X formado é chamado de produto wedge ou unido de um ponto e é de-
notado por X = KV L. O espaco K V L é formado pela juncdo de K e L em um tnico

ponto.

2.11 Ndameros de Betti e a caracteristica de Euler

Existe uma relagdo entre a caracteristica de Euler e os grupos de cadeia, ja que
Ci(K) é gerado pelas k-células. Denotaremos por rk(Cy(K)), é o numero de k-células

de K. Assim, para um n —complexo, temos

X(K) = rk(Co(K)) = rk(Cy (K)) + -+ + (=1)"rk(C,,(K))

Porém, existe uma relacao mais sutil entre os grupos de homologia e a caracteristica

de Euler; para explorar isso vamos considerar as seguintes proposi¢des sobre grupos.

Proposicdo 2.56 Seja G um grupo abeliano com um subgrupo H finitamente gerado.
Entdo

rk(G/H ) = rk(G) - rk(H),
onde rk(G) = #(elementos da base).
Proposicao 2.57 Seja f : G; — G, um homomorfismo entre os grupos G, e G,. Entao,

rk(ker(f))+rk(Im(f)) = rk(Gy)

No que segue, denotaremos o k-ésimo homomorfismo de fronteira sobre os grupos

de cadeia de um complexo K por

8k . Ck(K) g Ck—l(K)-

Note que Zy(K) = ker(dy) e Bi(K) = Im(J,1). Sejam
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cr = rk(Cr(K))
zy = rk(Zi(K))
by = rk(Bi(K))

Pela Proposicédo (2.57), para k =1, 2,..., temos

Cr =2+ bk_1 (2.2)

Definicdo 2.58 O niimero de Betti de um complexo K é dado por

Pr = rk(Hi(K))

Assim, pela Defini¢do (2.51) e pela Proposicado (2.56), temos que

Bk = zx — by (2.3)

Agora vamos apresentar o teorema que relaciona a caracteristica de Euler e os

numeros de Betti.

Teorema 2.59 Seja K um n—complexo. Entdo

X(K)=Bo—p1+-+(=1)"B,

Demonstragao: Usando (2.2) e (2.3)), temos que

Bo—B1+-+(=1)"B, = (29 —bg) = (21 = by) +---+(=1)"(z, — by,)
=zo—(bo+21)+ (b1 +2p) + -+ (-1)"" (b1 +2,) + (1)"b,,

=zp—c1+ 0o+ 4+ (=1)" e, + (-1)"D,
Entretanto, para qualquer 0 — cadeia C, d(C) = 0, logo Zy(K) = Cy(K) e, entdo,

2y = ¢g- Além disso, o grupo B,(K) = 0, pois nenhuma n — cadeia em K, exceto 0,

pode ser fronteira, pois nao existem (n+1)-células. Eentdo b,, = 0. Portanto,

Bo—P1+-+(-1)"B,=co—c1 +ey+-+ (1), = x(K)
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O

Os numeros de Betti sdo invariantes topoldgicos que contém uma grande quan-
tidade de informagoes. Eles podem ser combinados como no Teorema para
formar a caracteristica de Euler. Além disso, pelo Teorema (2.59), note que se S é
uma superficie orientada, f, = 1, e se S é ndo orientada, entdo p, = 0. Entdo g,
determina a orientabilidade da variedade. O ntimero de componentes conexas no

espago é dada por .

2.12 Invariancia da homologia para superficies

Gostariamos de mostrar que os grupos de homologia de um complexo K depende
somente do espaco subjacente |K| e ndo da particular escolha do complexo.
A prova da invaridncia dos grupos de homologia para superficies é muito seme-
lhante a prova do Teorema da invariadncia da caracteristica de Euler. Vamos
assumir que K é um 2—-simplexo representando uma superficie, entdo K é composto
de poligonos identificados ao longo de suas arestas e vértices. Qualquer poligono
pode ser subdividido em tridngulos, e esses tridngulos podem ser divididos nova-
mente em um processo de subdivisdo baricéntrica para formar uma triangulagao
da superficie. Vamos nomear esse complexo simplicial por K’, assim |K| = |K’|. Pe-
los Teoremas e sobre classificagdo de superficies com e sem fronteira
qualquer triangulagdo de uma superficie pode ser reduzido a um diagrama plano
na forma padrdo. Assim, para mostrar que os grupos de homologia ndo dependem
do complexo K, deve-se mostrar que as transformacGes que levam K para K’ ndo
afetam os grupos de homologia.

Os teoremas sobre invaridncia serdo apresentados a seguir.

(1

Teorema 2.60 Seja K um complexo e K\Y) a subdivisdo baricéntrica de K. Entdo,

Teorema 2.61 Seja S um complexo dado pelo diagrama planar na foram padrao de uma

superficie. Se K é um 2 — complexo tal que |K| é homeomorfo a S, entio

Corolario 2.62 Se K e K’ sdo 2 — complexos tais que |K| = |K’| = S para alguma su-

perficie S, entdo
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O Teorema e o Corolario (2.62) implicam que os grupos de homologia depen-
dem, pelo menos para superficies, somente do espago subjacente e ndo do particular
complexo usado para representar o espago. Entdo, dois 2 — complexos de uma su-
perficie nos dao os mesmos grupos de homologia, entao faz sentido escolher o mais
simples.

O argumento chave do Corolario é que K e K’ sdo subdivisoes de um mesmo

diagrama planar. Podemos utilizar essa mesma ideia para obter o seguinte coroldrio.

Corolario 2.63 Se K e K’ sido complexos com |K| = |K’|, e K e K’ tem uma subdivisdo

comum K”, entdo

Hy(K) = Hi(K').

No Corolério (2.63), o complexo K pode ser subdividido por uma sequéncia finita
de subdivisoes elementares para obtermos um complexo K”, e, entdao, K” pode ser
“desmontado” utilizando as inversas das transformacoes elementares para obtermos
K’. Entao, a existéncia de uma subdivisdo comum forma uma conexao entre ambos
os complexos.

Para arbitrdrios 2—complexos (ndo somente superficies), pode-se provar a invaridncia
dos grupos de homologia usando o Corolério (2.63)) e a versdo bidimensional da fa-

mosa conjectura topoldgica apresentada a seguir.

Conjectura 2.64 Quaisquer duas triangulagoes de um espago topolégico tem uma sub-

divisdo comum.

A Conjectura (2.64) foi provada para todos 2 — complexos triangulaveis em 1963
por Papakyriakopoulos.
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